
.

ucsd-psystem-xc
UCSD p-System Cross Compiler

Reference Manual

Peter Miller
<pmiller@opensource.org.au>

.

This document describes ucsd-psystem-xc version 0.11
and was prepared 28 July 2012.

This document describing the ucsd-psystem-xc package, and the ucsd-psystem-xc utility pro-
grams, are
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

0

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

The README file 1
Release Notes 3
How to build ucsd-psystem-xc 11

Internals Factory factory factories: Abandon all flow of control Ye who enter here. 14
ucsdpsys(1) UCSDp-System launcher. 23
ucsdpsys_assemble(1) UCSDp-System cross assembler. 25
ucsdpsys_charset(1) UCSDp-System font builder 30
ucsdpsys_charset(1) UCSDp-System font builder 30
ucsdpsys_compile(1) compilePascal source to UCSD p-System code file 31

Deviations from UCSD p-System Pascal 34
ucsdpsys_depends(1) UCSDPascal file dependency tracker 42
ucsdpsys_disassemble(1) disassemblea UCSD p-System code file 44
ucsdpsys_downcase(1) convert Pascal to lower case. 46
ucsdpsys_errors(1) UCSDp-System assembler error file builder 47
ucsdpsys_history(1) UCSDPascal notes and archaeology. 48
ucsdpsys_libmap(1) printmap of UCSD p-System code file 77
ucsdpsys_librarian(1) UCSDp-System codefile librarian. 78
ucsdpsys_link(1) UCSDp-System codefile linker 81
ucsdpsys_littoral(1) readUCSD Pascal and write C++. 83
ucsdpsys_opcodes(1) UCSDp-System system.opcodes generator. 84
ucsdpsys_osmakgen(1) writeMakefile for ucsd-psystem-os project. 86
ucsdpsys_pretty(1) UCSDp-System Pascal pretty printer. 89
ucsdpsys_setup(1) manipulatethe SYSTEM.MISCINFO file 91
ucsdpsys_xc_license(1) GNUGeneral Public License. 93
ucsdpsys_codefile(5) UCSDp-System codefile format. 102
ucsdpsys_errors(5) UCSDp-System assembler error file format. 106
ucsdpsys_opcodes(5) formatof the OPCODES.II.0 file 107

Reference Manual ucsd-psystem-xc iii

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

ucsdpsys_history(1) 48 ucsdpsys history - UCSD Pascal notes and archaeology
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy]System

cross
assembler

ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System assembler error file builder
ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System assembler error file format
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy]System cross

assembler
ucsdpsys_charset(1) 30 ucsdpsys charset - UCSD p[hy]System fontbuilder
ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System

assembler error file
builder

ucsdpsys_littoral(1) 83 ucsdpsys littoral - read UCSD Pascal and
write

C++

ucsdpsys_downcase(1) 46 ucsdpsys downcase - convert Pascal to lower case
ucsdpsys_charset(1) 30 ucsdpsys charset - UCSD p[hy]System font builder
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to

UCSD p[hy]System
code file

ucsdpsys_disassemble(1) 44ucsdpsys disassemble - disassemble a UCSD
p[hy]System

code file

ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD
p[hy]System

code file

ucsdpsys_codefile(5) 102 ucsdpsys codefile - UCSD p[hy]System codefile format
ucsdpsys_librarian(1) 78 ucsdpsys librarian - UCSD p[hy]System codefile librarian
ucsdpsys_link(1) 81 ucsdpsys link - UCSD p[hy]System codefile linker
ucsdpsys_codefile(5) 102 ucsdpsys codefile - UCSD p[hy]System codefile

format
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to UCSD

p[hy]System code file
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to UCSD

p[hy]System code file
ucsdpsys_downcase(1) 46 ucsdpsys downcase - convert Pascal to lower case
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy]System cross assembler
ucsdpsys_depends(1) 42 ucsdpsys depends - UCSD Pascal file dependency tracker
ucsdpsys_depends(1) 42 ucsdpsys depends - UCSD Pascal file dependency

tracker
ucsdpsys_disassemble(1) 44 ucsdpsys disassemble - disassemble a UCSD p[hy]System code file
ucsdpsys_disassemble(1) 44 ucsdpsys disassemble - disassemble a UCSD

p[hy]System code file
ucsdpsys_downcase(1) 46 ucsdpsys downcase - convert Pascal to lower case
ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System

assembler
error file builder

ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System
assembler

error file format

ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System assembler error
fi le builder

ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System assembler error
fi le format

ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to
UCSD p[hy]System code

fi le

ucsdpsys_disassemble(1) 44ucsdpsys disassemble - disassemble a UCSD
p[hy]System code

fi le

ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD
p[hy]System code

fi le

Reference Manual ucsd-psystem-xc iv

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

ucsdpsys_opcodes(5) 107 ucsdpsys opcodes - format of the
OPCODES.II.0

fi le

ucsdpsys_setup(1) 91 ucsdpsys setup - manipulate the
SYSTEM.MISCINFO

fi le

ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System
assembler error

fi le builder

ucsdpsys_depends(1) 42 ucsdpsys depends - UCSD Pascalfi le dependency tracker
ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System

assembler error
fi le format

ucsdpsys_charset(1) 30 ucsdpsys charset - UCSD p[hy]System font builder
ucsdpsys_codefile(5) 102 ucsdpsys codefile - UCSD p[hy]System

codefile
format

ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System
assembler error file

format

ucsdpsys_opcodes(5) 107 ucsdpsys opcodes - format of the OPCODES.II.0 file
ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for the ucsd[hy]psystem[hy]os project
ucsdpsys_opcodes(1) 84 ucsdpsys opcodes - UCSD p[hy]System

system.opcodes
generator

ucsdpsys_history(1) 48 ucsdpsys history - UCSD Pascal notes and
archaeology

ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for
the ucsd[hy]psystem[

hy]os project

ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for
the ucsd[

hy]psystem[hy]os project

ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System assembler error file builder
ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System assembler error file format
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to

UCSD p[
hy]System code file

ucsdpsys_disassemble(1) 44ucsdpsys disassemble - disassemble a UCSD
p[

hy]System code file

ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD p[hy]System code file
ucsdpsys_codefile(5) 102 ucsdpsys codefile - UCSD p[hy]System codefile format
ucsdpsys_librarian(1) 78 ucsdpsys librarian - UCSD p[hy]System codefile librarian
ucsdpsys_link(1) 81 ucsdpsys link - UCSD p[hy]System codefile linker
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy]System cross assembler
ucsdpsys_charset(1) 30 ucsdpsys charset - UCSD p[hy]System font builder
ucsdpsys(1) 23 ucsdpsys - UCSD p[hy]System launcher
ucsdpsys_pretty(1) 89 ucsdpsys pretty - UCSD p[hy]System Pascal pretty printer
ucsdpsys_opcodes(1) 84 ucsdpsys opcodes - UCSD p[hy]System system.opcodes generator
ucsdpsys_opcodes(5) 107 ucsdpsys opcodes - format of the

OPCODES.
II.0 file

ucsdpsys(1) 23 require_ index
ucsdpsys_assemble(1) 25 require_ index
ucsdpsys_charset(1) 30 require_ index
ucsdpsys_charset(1) 30 require_ index
ucsdpsys_codefile(5) 102 require_ index
ucsdpsys_compile(1) 31 require_ index
ucsdpsys_depends(1) 42 require_ index
ucsdpsys_disassemble(1) 44 require_ index
ucsdpsys_downcase(1) 46 require_ index
ucsdpsys_errors(1) 47 require_ index
ucsdpsys_errors(5) 106 require_ index
ucsdpsys_history(1) 48 require_ index

Reference Manual ucsd-psystem-xc v

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

ucsdpsys_libmap(1) 77 require_ index
ucsdpsys_librarian(1) 78 require_ index
ucsdpsys_link(1) 81 require_ index
ucsdpsys_littoral(1) 83 require_ index
ucsdpsys_opcodes(1) 84 require_ index
ucsdpsys_opcodes(5) 107 require_ index
ucsdpsys_osmakgen(1) 86 require_ index
ucsdpsys_pretty(1) 89 require_ index
ucsdpsys_setup(1) 91 require_ index
ucsdpsys(1) 23 ucsdpsys - UCSD p[hy]System launcher
ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD p[hy]System

code file
ucsdpsys_librarian(1) 78 ucsdpsys librarian - UCSD p[hy]System

codefile
librarian

ucsdpsys_librarian(1) 78 ucsdpsys librarian - UCSD p[hy]System codefile
librarian

ucsdpsys_link(1) 81 ucsdpsys link - UCSD p[hy]System codefile linker
ucsdpsys_link(1) 81 ucsdpsys link - UCSD p[hy]System codefile linker
ucsdpsys_littoral(1) 83 ucsdpsys littoral - read UCSD Pascal and write C++
ucsdpsys_downcase(1) 46 ucsdpsys downcase - convert Pascal to lower case
ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for the ucsd[hy]psystem[hy]os

project
ucsdpsys_setup(1) 91 ucsdpsys setup - manipulate the SYSTEM.MISCINFO file
ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD p[hy]System code file
ucsdpsys_setup(1) 91 ucsdpsys setup - manipulate the SYSTEM. MISCINFO file
ucsdpsys_history(1) 48 ucsdpsys history - UCSD Pascal notes and archaeology
ucsdpsys_opcodes(5) 107 ucsdpsys opcodes - format of the OPCODES.II.0 file
ucsdpsys_opcodes(1) 84 ucsdpsys opcodes - UCSD p[hy]System

system.
opcodes generator

ucsdpsys_opcodes(5) 107 ucsdpsys opcodes - format of the OPCODES.II.0 file
ucsdpsys_opcodes(1) 84 ucsdpsys opcodes - UCSD p[hy]System

system.opcodes generator
ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for the

ucsd[hy]psystem[hy]os project
ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for

the ucsd[hy]psystem[hy]
os project

ucsdpsys_littoral(1) 83 ucsdpsys littoral - read UCSD Pascal and write C++
ucsdpsys_depends(1) 42 ucsdpsys depends - UCSDPascal file dependency tracker
ucsdpsys_history(1) 48 ucsdpsys history - UCSD Pascal notes and archaeology
ucsdpsys_pretty(1) 89 ucsdpsys pretty - UCSD p[hy]SystemPascal pretty printer
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to UCSD p[hy]System code

fi le
ucsdpsys_downcase(1) 46 ucsdpsys downcase - convert Pascal to lower case
ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System assembler error file builder
ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System assembler error file format
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to

UCSD
p[hy]System code file

ucsdpsys_disassemble(1) 44ucsdpsys disassemble - disassemble a UCSD p[hy]System code file
ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD p[hy]System code file
ucsdpsys_codefile(5) 102 ucsdpsys codefile - UCSD p[hy]System codefile format
ucsdpsys_librarian(1) 78 ucsdpsys librarian - UCSD p[hy]System codefile librarian
ucsdpsys_link(1) 81 ucsdpsys link - UCSD p[hy]System codefile linker
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy]System cross assembler

Reference Manual ucsd-psystem-xc vi

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

ucsdpsys_charset(1) 30 ucsdpsys charset - UCSD p[hy]System font builder
ucsdpsys(1) 23 ucsdpsys - UCSD p[hy]System launcher
ucsdpsys_pretty(1) 89 ucsdpsys pretty - UCSD p[hy]System Pascal pretty printer
ucsdpsys_opcodes(1) 84 ucsdpsys opcodes - UCSD p[hy]System system.opcodes generator
ucsdpsys_pretty(1) 89 ucsdpsys pretty - UCSD p[hy]System Pascal pretty printer
ucsdpsys_pretty(1) 89 ucsdpsys pretty - UCSD p[hy]System Pascal pretty

printer
ucsdpsys_pretty(1) 89 ucsdpsys pretty - UCSD p[hy]System Pascal

pretty
printer

ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD p[hy]System code file
ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for

the ucsd[hy]psystem[hy]os
project

ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for
the ucsd[hy]

psystem[hy]os project

ucsdpsys_littoral(1) 83 ucsdpsys littoral - read UCSD Pascal and write C++
ucsdpsys(1) 23 require_index
ucsdpsys_assemble(1) 25 require_index
ucsdpsys_charset(1) 30 require_index
ucsdpsys_charset(1) 30 require_index
ucsdpsys_codefile(5) 102 require_index
ucsdpsys_compile(1) 31 require_index
ucsdpsys_depends(1) 42 require_index
ucsdpsys_disassemble(1) 44 require_index
ucsdpsys_downcase(1) 46 require_index
ucsdpsys_errors(1) 47 require_index
ucsdpsys_errors(5) 106 require_index
ucsdpsys_history(1) 48 require_index
ucsdpsys_libmap(1) 77 require_index
ucsdpsys_librarian(1) 78 require_index
ucsdpsys_link(1) 81 require_index
ucsdpsys_littoral(1) 83 require_index
ucsdpsys_opcodes(1) 84 require_index
ucsdpsys_opcodes(5) 107 require_index
ucsdpsys_osmakgen(1) 86 require_index
ucsdpsys_pretty(1) 89 require_index
ucsdpsys_setup(1) 91 require_index
ucsdpsys_setup(1) 91 ucsdpsys setup - manipulate the

SYSTEM.MISCINFO file
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to UCSD p[hy]System code file
ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy] System assembler error file builder
ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy] System assembler error file format
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to

UCSD p[hy]
System code file

ucsdpsys_disassemble(1) 44ucsdpsys disassemble - disassemble a UCSD
p[hy]

System code file

ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD p[hy] System code file
ucsdpsys_codefile(5) 102 ucsdpsys codefile - UCSD p[hy] System codefile format
ucsdpsys_librarian(1) 78 ucsdpsys librarian - UCSD p[hy] System codefile librarian
ucsdpsys_link(1) 81 ucsdpsys link - UCSD p[hy] System codefile linker
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy] System cross assembler
ucsdpsys_charset(1) 30 ucsdpsys charset - UCSD p[hy] System font builder
ucsdpsys(1) 23 ucsdpsys - UCSD p[hy] System launcher
ucsdpsys_setup(1) 91 ucsdpsys setup - manipulate the SYSTEM.MISCINFO file

Reference Manual ucsd-psystem-xc vii

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

ucsdpsys_opcodes(1) 84 ucsdpsys opcodes - UCSD p[hy]System system.opcodes generator
ucsdpsys_pretty(1) 89 ucsdpsys pretty - UCSD p[hy] System Pascal pretty printer
ucsdpsys_opcodes(1) 84 ucsdpsys opcodes - UCSD p[hy] System system.opcodes generator
ucsdpsys_depends(1) 42 ucsdpsys depends - UCSD Pascal file

dependency
tracker

ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for
the

ucsd[hy]psystem[hy]os project

ucsdpsys_littoral(1) 83 ucsdpsys littoral - read UCSD Pascal and write C++
ucsdpsys_depends(1) 42 ucsdpsys depends - UCSD Pascal file dependency tracker
ucsdpsys_history(1) 48 ucsdpsys history - UCSD Pascal notes and archaeology
ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System assembler error file

builder
ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System assembler error file

format
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to UCSD p[hy]System code file
ucsdpsys_disassemble(1) 44 ucsdpsys disassemble - disassemble a UCSD p[hy]System code file
ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD p[hy]System code file
ucsdpsys_codefile(5) 102 ucsdpsys codefile - UCSD p[hy]System codefile format
ucsdpsys_librarian(1) 78 ucsdpsys librarian - UCSD p[hy]System codefile librarian
ucsdpsys_link(1) 81 ucsdpsys link - UCSD p[hy]System codefile linker
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy]System cross assembler
ucsdpsys_charset(1) 30 ucsdpsys charset - UCSD p[hy]System font builder
ucsdpsys(1) 23 ucsdpsys - UCSD p[hy]System launcher
ucsdpsys_pretty(1) 89 ucsdpsys pretty - UCSD p[hy]System Pascal pretty printer
ucsdpsys_opcodes(1) 84 ucsdpsys opcodes - UCSD p[hy]System system.opcodes

generator
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy]System

cross assembler
ucsdpsys_charset(1) 30 ucsdpsys charset - UCSD p[hy]System font

builder
ucsdpsys_codefile(5) 102 ucsdpsys codefile - UCSD p[hy]System

codefile format
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to

UCSD p[hy]System code file
ucsdpsys_depends(1) 42 ucsdpsys depends - UCSD Pascal file

dependency tracker
ucsdpsys_disassemble(1) 44 ucsdpsys disassemble - disassemble a UCSD

p[hy]System code file
ucsdpsys_downcase(1) 46 ucsdpsys downcase - convert Pascal to lower

case
ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System

assembler error file builder
ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System

assembler error file format
ucsdpsys_history(1) 48 ucsdpsys history - UCSD Pascal notes and

archaeology
ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD

p[hy]System code file
ucsdpsys_librarian(1) 78 ucsdpsys librarian - UCSD p[hy]System

codefile librarian
ucsdpsys_link(1) 81 ucsdpsys link - UCSD p[hy]System codefile

linker

Reference Manual ucsd-psystem-xc viii

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

ucsdpsys_littoral(1) 83 ucsdpsys littoral - read UCSD Pascal and
write C++

ucsdpsys_opcodes(5) 107 ucsdpsys opcodes - format of the
OPCODES.II.0 file

ucsdpsys_opcodes(1) 84 ucsdpsys opcodes - UCSD p[hy]System
system.opcodes generator

ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for
the ucsd[hy]psystem[hy]os project

ucsdpsys_pretty(1) 89 ucsdpsys pretty - UCSD p[hy]System Pascal
pretty printer

ucsdpsys_setup(1) 91 ucsdpsys setup - manipulate the
SYSTEM.MISCINFO file

ucsdpsys(1) 23 ucsdpsys - UCSD p[hy]System launcher
ucsdpsys_littoral(1) 83 ucsdpsys littoral - read UCSD Pascal and write C++
ucsdpsys_osmakgen(1) 86 ucsdpsys osmakgen - write the Makefile for the

ucsd[hy]psystem[hy]os project

Reference Manual ucsd-psystem-xc ix

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

NAME
ucsd-psystem-xc − UCSD p-System Pascal cross compiler

DESCRIPTION
Theucsd-psystem-xcpackage is a collection of tools for compiling Pascal source files to produce UCSD
p_System code files. Thepackage includes:

ucsdpsys(1)
A laucher to run the virtual machine comfortably from the command line. It includes a batch
mode for automating (scripting) operations.

ucsdpsys_assemble(1)
The cross assembler. It is able to assemble several different target microprocessor architectures
in the one executable.

ucsdpsys_compile(1)
The cross compiler. It understands the UCSD Pascal dialect, including UNIT definitions and
references.

ucsdpsys_depends(1)
May be used to determine include file dependencies, for use withmake(1) and other build tools.

ucsdpsys_disassemble(1)
For disassembling UCSD p-System code files. Thisis used to verify the correctness of the
compiler.

ucsdpsys_downcase(1)
A untility for converting Pascal code to lower case, leaving string constants and comments
unaltered.

ucsdpsys_errors(1)
A utility to translate back and forth between text and binary representations of the assembler error
message files.

ucsdpsys_libmap(1)
A utility for printing segment maps of UCSD p-System library files.

ucsdpsys_librarian(1)
A utility for manipulating the segments within UCSD p-System codefiles.

ucsdpsys_link(1)
A utility for linking UCSD p-System codefiles to their assembler components.

ucsdpsys_opcodes(1)
A utility to translate back and forth between text and binary representations of the assembler
opcode files.

ucsdpsys_setup(1)
A utility to translate back and forth between text and binary representations of the
system.miscinfo fi le.

Sister Projects
Some other projects will be of interest to you.

ucsd-psystem-fs
This package contains tools for manipulating UCSD p-System floppy disk images, and a file
system for mounting them in Linux as real file systems.
http://ucsd-psystem-fs.sourceforge.net/

ucsd-psystem-os
This project provides a self-hosting set of system sources.You need the disk images produced by
this project for the virtual machine to have a “system.pascal” file to run (this provides runtime
support and the user command executive). Thisis a work in progress.

Reference Manual ucsd-psystem-xc 1

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

uvsd-psystem-vm
This package provides a fully featured UCSD p-Machine emulator.

ARCHIVE SITE
The latest version ofucsd-psystem-xcis available on the Web from:

URL: http://ucsd-psystem-xc.sourceforge.net/
File: ucsd-psystem-xc-0.11.README # Description, from the tar file
File: ucsd-psystem-xc-0.11.lsm # Description, LSM format
File: ucsd-psystem-xc-0.11.tar.gz #the complete source
File: ucsd-psystem-xc-0.11.pdf # Reference Manual

BUILDING ucsd-psystem-xc
Full instructions for buildingucsd-psystem-xcmay be found in theBUILDING fi le included in this
distribution.

COPYRIGHT
ucsd-psystem-xcversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in theLICENSEfi le included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 2

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

RELEASE NOTES
This section details the features and bug fixes of each of the releases.

Version 0.11 (2012-Jul-28)
• Kai Henningsen <kai.extern@gmail.com> discovered that ’Makefile’ files generated by

ucsdpsys_osmakgen did not correctly support the ’distclean’ target. This has been corrected.

• Work is in progress to be able to cope with multiple p-machine versions.

• The compiler is now able to cope with variables declared in plain units.

• Theucsdpsys_osmakgen(1) command now understands how to generate the necessary debian/ files for
building a debian package from the ucsd p-system operating system sources.

• Thw ucsdpsys(1) file no longer creates the implied system disk image if one of the supplied disk images
is a functioning system disk.

• Theucsdpsys(1) command now better understands where ucsd-psystem-os installs its files, which it
needs in order to build the default system disk image.

Version 0.10 (2011-May-18)
• A bug which caused a segfault in theubsdpsys −−batchoption has been fixed.

• Theucsdpsys_osmakgen(1) command, used by the ucsd-psystem-os project to generate itsMakefile ,
now understands the presence of man pages, and installs them appropriately.

Version 0.9 (2011-Feb-02)
• The slides of the LCA 2011 talk "Factory Factory Factories" is now available in the web site.

• Theucsdpsys_osmakgen(1) command has been improved, with a view to Debian packaging of the OS.

• Theucsdpsys(1) command has a new−−no−systemoption, to suppress the construction of a system disk
image.

• There is a newucsdpsys_compile(1) option,−−library−path for adding directories to the library search
path.

• Theucsdpsys_compile(1) command now fully supports the(*$U filename *) control comment.

• Theucsdpsys_assemble(1) command now understands the.error .print .sbttl .title pseudo-
ops, mostly named for PDP-11 assmebler pseudo-ops of the same name.

• Theucsdpsys_charset(1) command has been moved to this project, out of the ucsd-psystem-fs project.

• Theucsdpsys_assemble(1) command now understands how to produce assembler listings, using the−L
option. Seeucsdpsys_assemble(1) for more information.

• Theucsdpsys_compile(1) command now issues warnings for unreachange statements. There is a new
(*$warning unreachable false *) control comment to disable the warning.

• The project download web page now includes a link to the LunchPad PPA, where pre-compiled Ubuntu
packages are available.

• Theucsdpsys_assemble(1) command now understands the.ref pseudo-op, and generates the
appropriate relocation information.

• Theucsdpsys_assemble(1) command now more closely emulates the UCSD native assembler, in the way
it forgets symbols created between one.proc and another. This stops historical source files from
complaining about multiply defined symbols all over the place.

• Theucsdpsys_assemble(1) command now requires that the architecture be explicitly stated, either with
the.arch pseudo-op, or the−−arch command line option, in all cases.

• Theucsdpsys_assemble(1) command now ignores all input after the.end directive.

• Theucsdpsys_assembler(1) command now understands.gt greater than,>= greater than or equal,.lt
less than,<= less than or equal,<> inequality, and= equality comparisons.

Reference Manual ucsd-psystem-xc 3

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• Theucsdpsys_assemble(1) command, now understands, for 6502 opcodes, how to relocate segment
relative addresses for absolute addressing opcodes.

• Theucsdpsys_assemble(1) command now understands conditional assembly.if , .else and.endc
pseudo-op directives.

• Theucsdpsys_assembler(1) command now understands the.macro pseudo-op, for defining an
substituting macros into the code stream.

• A bug has been fixed in the code that checks codefiles for validity. It no longer rejects segment
dictionaries with zero-length UNITSEG segments. Theseare produced when a program USES a non-
intrinsic unit, but is not yet linked.

Version 0.8 (2010-Aug-28)
• Theucsdpsys_assemble(1) cross assembler now understands the.func pseudo-op.

• The error message formatting has been changed to use a 4 character hanging indent for multi-line error
messages.

• A bug has been fixed in theucsdpsys_osmakgen(1) command, it now correctly understands how to
remove system segments from libraries with an assembler component.

• Theucsdpsys_osmakgen(1) command now understands how to link Pascal programs with their assembler
components.

• A bug has been fixed in theucsdpsys(1) command, it no longer fails if its temporary files are unlinked
twice.

• There is a newucsdpsys_compile(1) −−view−path option, symmetric with theucsdpsys_assemble(1) and
ucsdpsys_depends(1) commands’ options of the same name.

• Theucsdpsys_assemble(1) command now understands the.incude pseudo-op. Thisis also a new
corresponding−I command line option.

• A bug has been fixed in theucsdpsys_librarian(1) command, it now patches the segment number in the
procedure dictionary when it renumbers a segment.

• A bug has been fixed in theucsdpsys_disassemble(1) anducsdpsys_libmap(1) commands, they were
printing SEPPROC link information incorrectly.

• Theucsdpsys_osmakgen(1) command now generates an “install” target, so that the results of the build
can be installed into the system.

• Theucsdpsys_assemble(1) cross assembler now groks unary minus (−e) unary plus (+e) bit-wise and (e1
& e2), bit-wise or (e1 | e2), bit-wise not (˜e), bit-wise exclusive-or (e1 ˆ e2), and modulo (e1 % e2)
expressions.

• Theucsdpsys_compile(1) cross compiler can now cope with VAR clauses in the IMPLEMENTATION
section of a UNIT.

• Theucsdpsys_compile(1) cross compiler is now able to cope with units that export variables, noth
intrinsic and non-intrinsic.

• Theucsdpsys_compile(1) grammar now understands “var anything” parameters to external assembler
procedures and functions.

• Theucsdpsys_osmakgen(1) command now understands assembler source file include dependencies.

• Theucsdpsys_depends(1) command now understands how to process assembler source files, when
looking for include dependencies.

• Theucsdpsys_assemble(1) command now procuces minimally correct relocation data sectiosn for each
native code procedure. Theucsdpsys_disassemble(1) command now has a minimally correct
understanding of relocation data.

• There is a newucsdpsys_link(1) command, that may be used to link programs and libraries of separate
procedures and functions together, to produce executable output codefiles. Seeucsdpsys_link(1) for

Reference Manual ucsd-psystem-xc 4

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

more information.

• Theucsdpsys_libmap(1) anducsdpsys_disassemble(1) commands now include the EOFMARK link
information record, to be sure it contains the correct argument. Theucsdpsys_assemble(1) and
ucsdpsys_compile(1) commands now correctly generate EOFMARK link information records.

• Theucsdpsys_littoral(1) command now correctly translatesnil to NULL.

• Theucsdpsys_littoral(1) command now expandswith variables completely. This preserves the
semantics into the C++ code.

• There is now a build dependency on the libexplainproject (http://libexplain.sourceforge.net/).

• A bug has been fixed in theucsdpsys(1) command, it no longer overwrite its own temporary files. All of
theucsdpsys(1) options now hav elong versions as well. The UCSD p-System volumes that are created
on-the-fly are now created large enough to hold all of the data.

• Theucsdpsys_osmakgen(1) command is now able to figure out when it needs to make a copy of
system/globals.text based on include dependency information and the source file manifest.

• Thefor statement now understandsreal control variables. Notethat the native compiler does not
allow this.

• Theucsdpsys_assemble(1) cross assembler now understands the.def pseudo-op.

Version 0.7 (2010-Jun-21)
• There is a newucsdpsys_osmakgen(1) command, used to write theMakefile for the ucsd-psystem-os

project.

• Theucsdpsys_setup(1) command now accepts an−−arch option, in order to select the byte sex of the
SYSTEM.MISCINFOfi le it generates.

• There is a newucsdpsys_errors(1) command, to translating the assembler error files from text to binary.

• Theucsdpsys_opcode(1) command now understands the opcode file format used by the UCSD Adaptive
Assembler.

• A bug has been fixed in theucsdpsys_depends(1) command, it no longer writes to a file called “−” when
it should write to the standard output.

• Theucsdpsys_librarian(1) command has a new−−remove-system-segments option, used to
remove dummy segments from a(*$U−*) utility.

• Theucsdpsys_librarian(1) command is now able to renumber segments when they are transferred
bwtween codefiles.

• Theucsdpsys_compile(1) command has a new−−hostoption, that allows you to set the byte-sex based
on the name of the host. Which helps those of us who don’t necessarily remember what endian-ness all
of the hosts actually are.

• Theucsdpsys_assemble(1) command has a new−−architecture option, to permit the target architecture
to be set from the command line.

• Theucsdpsys_assemble(1) multi-target cross assembler now has the beginnings of support for PDP-11
assembler.

• The cross compiler is now able to recognize the ord/odd hack (used to gain access to bit-wise opcodes)
and turn such expression trees from logical operations into bit-wise operations.

• The disassembler no longer rejects valid machine code segments with very short procedures.

• Theucsdpsys_assemble(1) multi-target cross assembler now has beginnings of 6502 support, including
both the MosTech syntax and the Apple syntax.

• A bug has been fixed in the cross compiler, it now generates the correct opcode for the inline-math sqrt
function.

Reference Manual ucsd-psystem-xc 5

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• The assembler now has a.radix pseudo-op, that may be used to change the default radix being used
by the assembler.

• A bug has been fixed in repeat/until statements, it was generating no code in some cases.

Version 0.6 (2010-May-30)
• The compiler now understands EXTERNAL function and procedure declarations, and produces

corresponding linker records.

• The compiler now has complete long integer support.

• The compiler now understands the built-in STR function.

• It is now possible to write long integer constants in the source code. They take the same forms as other
integer constants, except they are suffixed with the letter L. This is an idea transplanted from C, the
UCSD native compiler does not recognise such constants. It makes testing and debugging the long
integer constant folding much easier.

• The compiler now understandsunit definitions, using II.1 syntax and semantics. If II.0separate
unit definitions are seen, they result in a warning, and theseparate keyword is otherwise ignored.

• The compiler now understands a C-style ternary operator expression(e1 ? e2 : e3) . The UCSD
native compiler doesn’t hav ethis.

Version 0.5 (2010-May-17)
• There is a new(*$feature underscore-significant true*) contol comment, that may be

used for increased ISO 10206 conformance.

• A bug has been fixed in the RECORD code, it no longer places the selector variable in the variant part of
the record, and thus is no longer requesting memory from NEW that is one word short.

• There is a new(*$feature efj-nfj false*) control comment to turn off the use of the EFJ and
NFJ opcodes.

• There is a new(*$feature short-with false*) control comment, that can be used to turn off
WITH statement optimizations.

• The built-in UNITWRITE procedure now accepts string constants for the second parameter. The UCSD
native compiler did not allow this. Handyfor debugging the system I/O procedures.

• The compiler now optimizes IF stratements with GOTO clauses. Itnow goes directly to the label from
the condition, when possible, rather than using UJP in the individual clauses.

• The IF statement now generates better code for the case where THEN is empty but ELSE is not.

• The compiler now understands the ISO 10206 integer constants with an explicit radix. This was not
available in the UCSD native compiler, for obvious reasons.

• The is a newucsdpsys_setup(1) command, used to encode and decode theSYSTEM.MISCINFOfi le.

• There is a newucsdpsys_downcase(1) command, that may be used to convert identifiers in Pascal source
code from upper case to lower case.

• The compiler no longer has a problem with sets passed as parameters. The way sets are push onto the
stack has been further optimized.

• The compiler now understands how to optimize away MOVELEFT, MOVERIGHT and FILLCHAR with
a constant zero or negative length.

• A bug has been fixed in the IN operator, in the case where the set had a fixed size.

• A bug has been fixed in the constant folding of string comparisons, it was getting relational comparisons
(<, <=, >, >=) wrong, but equality comparisons (=, <>) right.

• A bug has been fixed in the indexing of byte arrays (pointers) with enum types. It no longer throws an
assert.

Reference Manual ucsd-psystem-xc 6

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• The compiler now issues warnings for comments that are not ISO 7185 comforming.

• A bug has been fixed in the code generation of MOV opcodes, in the case where more than 127 words
had to be moved.

• The compiler now understandsarctan (ISO 10206) as a synonym foratan , but only if (*$feature
inline-math true*) is in effect.

• The compiler now generates correct code for NOT logical expressions assigned to a boolean variable, or
passed as a boolean parameter.

• A bug has been fixed in the code that folds constant MPI (integer multiply) expressions.

• A bug has been fixed in the optimization of integer subtraction.

• A bug has been fixed in the optimization of the ADI (add integer) expression.

• A bug has been fixed in the optimisation of the logical NOT expression.

• The cross compiler now understands the bit-wise integer AND, OR and NOT expressions.

• The compiler now generates LDB (load byte) and STB (store byte) instructions for packed arrays of 8-bit
things, not just packed array of char. This is the same behaviour as the UCSD native compiler.

• There is a newucsdpsys_librarian(1) −R option, that can be used to remove segments by name or by
number.

Version 0.4 (2010-May-06)
• A bug has been fixed in the code generation for large set constants.

• The CASE statement now understands negative case values.

• The compiler now understands how to cast string constants into packed-array-of-char constants, when
they are procedure and functions parameters.

• The compiler now understands when a case control expression is a function call with no parameters.

• The compiler now understands functions calls with no parameters on either side of the IN operator.

• The compiler now generates the correct code for segment procedures that are declared forward.

• The compiler now understands how to pass parameters that are records, by value.

• The compiler now generates correct code for array parameters when they are passed by value.

• A bug has been fixed in the READLN code generation, it no longer throws an assert.

• The compiler no longer issues syntax errors when semicolons appear in questionable places in RECORD
declarations.

• The way symbol conflicts and shadows are calaculated has been changed, it was getting false positive on
the conflict tests.

• The compiler now understands passing a string as the first parameter to the FILLCHAR procedure.

• The compiler now understands the unary plus operator.

• The compiler now understands the built-in GET, GOT OXY, PAGE, PUT, SEEK, UNITSTATUS and
UNITWAIT procedures.

• There is a new (*$feature inline-math true*) control comment. When this is enabled, the compiler now
understands the built-in ATAN, COS, EXP, LN, LOG, SIN and SQRT functions.

• There is a newucsdpsys_assemble(1) command, that may be used to assemble machine code and p-code.
It isn’t particularly capable, as yet, but it will become more so as work proceeds on the p-machine
validation

• The compiler now accepts for loops of char values where one or both limits are char constants.

• The built-in FILLCHAR procedure now accepts its third paramater being an enumerated type. This is for
backwards compatibility with the UCSD native compiler.

Reference Manual ucsd-psystem-xc 7

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• The compiler now understands how to index an array by a char value. Previously it was throwing an
assert.

• There is a new (*$feature ignore-undefined-segment-zero true *) option, that can be used to turn off
checking for undefined forward declarations, when those symbols would be in segment zero. This
“feature” is used by system utilities. All other cases of forward functions being undefined result in a
fatal error; use EXTERNAL for procedures to be linked later.

• The disassembler can now cope with broken pointers in a segment’s procedure dictionary. Usually
undefined (external) procedures with have a zero (0) entry in the procedure table.

• The string parameters length check is now a warning, rather than an error. This is because the implicit
copy at run-time will throw a run-time error of the string doesn’t fit.

• The compiler now accepts calls to the built-in EOF and EOLN functions with no parameters.

• The code generation for empty set constant has been improved. It no longer throws an assert. The same
assert revealed that empty sets as a function parameter was not correctly being cast to the appropriate
type of set.

Version 0.3 (2010-Apr-25)
• A warning is now issued if a case statement contains anotherwise clause. You can disable the

warning by using the(*$warning otherwise false*) control comment.

• The compile listing now includes the symbol table for each procedure and function.

• A bug has been fixed in the code that derefereces pointers to strings. It no longer tries to laod the whole
string onto the stack. The compiler now understands how to deal with string-typed fields on the right
hand side of dot (expr.name) expressions.

• A bug has been fixed where function parameters that were the names of functions that had no parameters
were not being called.

The compiler no longer issues duplicate label warnings. In some
cases it was issuing warnings about unused labels twice.

• The compiler now understands the built-in COPY, DELETE, EOF, EOLN, FILLCHAR, INSERT, POS,
UNITBUSY and UNITCLEAR functions and procedures.

• The compiler no loger throws an assert if a procedure in segment zero is EXIT()ed.

• The compiler now correctly scopes enumerated constant definitions that are declared within the record
scopes.

• A bug has been fixed in the code that copied non-var string parameters into their local temporaries.

• Thw compiler now understands how to perform a non-local function return assignment.

• The compiler now also accepts an integer value as the third parameter of fillchar, even thouh it is
documented to take a char value.

• A bug has been fixed where constant negative array indexes would cause an assert to fail. It turned out
that some optimizations were not checking the range of offsets, and creating invalid offsets.

• The compiler now understands declaring and accessing arrays using multi dimension syntax.

• A number of error messages concerning forward declared types have been improved; they are now
earlier, and less cryptic.

• A bug has been fixed in the code generation of constant sets. They are no longer all-bits-zero, but
instead contain the correct value.

• The compiler now only range checks the CHR parameter if requested. The UCSD native compiler did
not range check CHR.

• The compiler now checks parameter string lengths (declaredvsactual) for overruns.

Reference Manual ucsd-psystem-xc 8

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• The compiler now understands about fileˆ variables.

• Theucsdpsys(1) command is now better at cleaning up its temporary files.

• The boolean comparison operators (=, <>, <=, <, >=, >) now hav eadditional code to cope with one side
or the other being a constant.

• A bug has been fixed in the way constant folding was handled around the FOR statement’s limits.

Version 0.2 (2010-Apr-19)
• The target for this release was to be able to compile the UCSD native Pascal compiler from source. This

has been achieved. It has yet to be determined if the compiler thus created actually functions.

• For differences between this cross compiler and the UCSD native compiler, see theucsdpsys_compile(1)
man page. The most notable difference is that SIZEOF is a keyword, requiring the UCSD native
compiler’s PROCEDURE SIZEOF to be renamed.

• Numerous bugs have been fixed, usually in unexplored corner cases.

• The compiler now understands the ABS, BLOCKREAD, BLOCKWRITE, CLOSE, CONCAT, EXIT,
HALT, IDSEARCH, IORESULT, KEYBOARD, LENGTH, MARK, MOD, MOVELEFT,
MOVERIGHT, OPENNEW, OPENOLD, PWROFTEN, READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SCAN, TREESEARCH, TRUNC, UNITREAD, UNITWRITE and WRITELN
built-in symbols.

• The STRING type has been turned into a built-in named type. This permits the unwise user to redefine
STRING to be a variable or a procedure or a function, or (for maximum confusion) a different type. This
is what shadow warnings are for.

• The compiler now understands the CASE, FOR, REPEAT UNTIL and WITH statements.

• The compiler now understands comparisons of CHAR values.

• The compiler now accepts pointers as parameters to the ORD function. This seems oddly inconsistent, in
a language as intent as Pascal is, with the protection of the programmer from his own folly.

• The compiler now understands set arithmetic and set comparisons.

• It is now possible, using theucsdpsys_compile −−listingoption, to obtain a compiler listing. The listing
contains the source code interleaved with the disassembled p-code. The(*$L) control comment is
ignored.

• The compiler now understands = and <> comparisons of multi-word values (arrays and records).

• The compiler can now be configured to have longer identifier (name) lengths. It defaults to 8 for
compatibility, and it still drops underscores.

• The compiler now understands comparisons of packed arrays of char.

Version 0.1 (2010-Apr-01)
First public release.

Reference Manual ucsd-psystem-xc 9

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

• The following built-in functions are understood: CHR, MEMAVAIL, ODD, ORD, PRED, SIZEOF, SQR,
SUCC, TIME.

• All of the usual Pascal expresion operators are understood, although not always across the full range of
parameter types.

• The cross compiler can produce both little-endian codefiles and big-endian codefiles.

• A number of features from modern Pascal implementations are avilable: hex constants, binary constants,
short-circuit boolean evaluation, the address-of (@) operator,

• Most of the Pascal statement types are available, including: BEGIN END, CASE (and OTHERWISE),
FOR, GOTO (local), IF THEN (ELSE), NEW (including variant types), REPEAT UNTIL, WHILE,
WITH, WRITE, WRITELN. It is not yet possble to use non-local GOTO.

• Segment procedures can be created, and UNIT interfaces can be accessed from library codefiles. It is not
yet possible to compile UNITs. While FORWARD procedures and functions are understood,
EXTERNAL procedures and functions are not yet supported.

• All of the UCSD Pascal data types are supported: ARRAY (including PACKED ARRAY), BOOLEAN,
CHAR, enumerated, FILE, INTEGER INTERACTIVE, pointers, REAL, RECORD (including PACKED
RECORD), SET, STRING (including STRING[n]), subrange, TEXT. The long integer types are not yet
supported.

• The cross compiler understands many of the UCSD Pascal constants, including: FALSE, MAXINT, NIL,
TRUE,

• The cross compiler is able to optimize most statements and expressions better than the Apple Pascal
native compiler. Constant expressions are folded at compile time.

• There is aucsdpsys_depends(1) command, that can be used by your build system to scan for(*$I
filename*) include directives.

Version 0.0 (2006-May-22)
No public release.

Reference Manual ucsd-psystem-xc 10

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

NAME
How to build ucsd-psystem-xc

BEFORE YOU START
There are a few pieces of software you may want to fetch and install before you proceed with your
installation of ucsd-psystem-xc.

Boost Library
You will need the C++ Boost Library. If you are using a package based system, you will need the
libboost-develpackage, or one named something very similar.
http://boost.org/

libexplain
Theucsd-psystem-xcpackage depends on the libexplain package: a library of system-call-specific
strerror replacements.
http://libexplain.sourceforge.net/

GNU Groff
The documentation for theucsd-psystem-xcpackage was prepared using the GNU Groff package
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time − if GNU Groff has been installed.

SITE CONFIGURATION
Theucsd-psystem-xcpackage is configured using theconfigureprogram included in this distribution.

Theconfigureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates theMakefileandlib/config.hfi les. Italso creates a shell scriptconfig.status
that you can run in the future to recreate the current configuration.

Normally, you justcd to the directory containingucsd-psystem-xc’s source code and then type
% ./configure
...lots of output...
%

Runningconfiguretakes a minute or two. Whileit is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, runconfigureusing the quiet option; for example,

% ./configure −−quiet
%

To compile theucsd-psystem-xcpackage in a different directory from the one containing the source code,
you must use a version ofmakethat supports theVPATH variable, such asGNU make. Change directory to
the directory where you want the object files and executables to go and run theconfigurescript. The
configurescript automatically checks for the source code in the directory thatconfigureis in and in.. (the
parent directory). If for some reasonconfigureis not in the source code directory that you are configuring,
then it will report that it can’t find the source code. In that case, runconfigurewith the option
−−srcdir= DIR, whereDIR is the directory that contains the source code.

By default,configurewill arrange for themake installcommand to install theucsd-psystem-xcpackage’s
fi les in/usr/local/bin, and /usr/local/man. There are options which allow you to control the placement of
these files.

−−prefix= PA TH
This specifies the path prefix to be used in the installation. Defaults to/usr/localunless otherwise
specified.

−−exec−prefix= PA TH
You can specify separate installation prefixes for architecture-specific files files. Defaults to
${prefix} unless otherwise specified.

−−bindir= PA TH
This directory contains executable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.

Reference Manual ucsd-psystem-xc 11

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

Defaults to${exec_prefix}/binunless otherwise specified.

−−mandir= PA TH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-only. Defaults to${prefix}/manunless otherwise
specified.

Theconfigurescript ignores most other arguments that you give it; use the−−help option for a complete
list.

On systems that require unusual options for compilation or linking that theucsd-psystem-xcpackage’s
configurescript does not know about, you can giveconfigureinitial values for variables by setting them in
the environment. InBourne-compatible shells, you can do that on the command line like this:

$ CXX=’g++ −traditional’ LIBS=−lposix ./configure
...lots of output...
$

Here are themakevariables that you might want to override with environment variables when running
configure.

Variable: CXX
C++ compiler program. The default isc++ .

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults to empty. It is common
to useCPPFLAGS=−I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to install files. Thedefault isinstall if you have it, cpotherwise.

Variable: LIBS
Libraries to link with, in the form−l foo−l bar. Theconfigurescript will append to this, rather
than replace it. It is common to useLIBS=−L/usr/local/lib to access other installed
packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so that they can be
included in the next release.

BUILDING UCSD-PSYSTEM-XC
All you should need to do is use the

% make
...lots of output...
%

command and wait. Whenthis finishes you should see a directory calledbin containing several programs.

If you have GNU Groff installed, the build will also create aetc/reference.psfi le. Thiscontains the
README file, this BUILDING file, and all of the man pages.

You can remove the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%

command. To remove all of the above files, and also remove theMakefileandlib/config.handconfig.status
fi les, use the

% make distclean
...lots of output...
%

command.

The fileetc/configure.in is used to createconfigureby a GNU program calledautoconf. You only need to
know this if you want to regenerateconfigureusing a newer version ofautoconf.

Reference Manual ucsd-psystem-xc 12

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

TESTING UCSD-PSYSTEM-XC
Theucsd-psystem-xcpackage comes with a test suite.To run this test suite, use the command

% make sure
...lots of output...
Passed All Tests
%

The tests take a few seconds each, with a few very fast, and a couple very slow, but it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests

should appear at the end of the make.

INSTALLING UCSD-PSYSTEM-XC
As explained in theSITE CONFIGURATIONsection, above, theucsd-psystem-xcpackage is installed
under the/usr/localtree by default. Usethe−−prefix= PA TH option toconfigureif you want some other
path. Morespecific installation locations are assignable, use the−−help option toconfigurefor details.

All that is required to install theucsd-psystem-xcpackage is to use the
% make install
...lots of output...
%

command. Controlof the directories used may be found in the first few lines of theMakefilefi le and the
other files written by theconfigurescript; it is best to reconfigure using theconfigurescript, rather than
attempting to do this by hand.

GETTING HELP
If you need assistance with theucsd-psystem-xcpackage, please do not hesitate to contact the author at

Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version number given by the
% ucsdpsys_compile −V
ucsdpsys_compile version 0.11.D001
...warranty disclaimer...
%

command. Pleasedo not send this example; run the program for the exact version number.

COPYRIGHT
ucsd-psystem-xcversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsd-psystem-xcpackage is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

It should be in theLICENSEfi le included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 13

Internals(1) Internals(1)

NAME
Factory factory factories − Abandon all flow of control Ye who enter here

ABSTRACT
In many cases, allegedly OO code is still highly procedural and imperative, with little advantage taken of
the possibilities presented by inheritance and virtual methods. This talk is about delegating flow of control
to an unknown future, manufacturing objects that in turn manufacture more objects, of various class
relationships. Why is this useful? How do you follow the program logic, especially if the classes haven’t
ev en been written yet? How come the combinatorial explosion doesn’t make it untestable? Comealong
and take a trip down the factory**n rabbit hole, a warren several layers deep, inside a compiler.

INTRODUCTION
There is a particular technique used in the ucsd-psystem-xc project to construct and manipulate Abstract
Syntax Tree (AST) representations of the Pascal program. Rather than having the tree operations be
implemented by procedural code external to the tree, the manipulations are performed by the tree nodes
themselves.

A design goal was to be able to re-use the grammar for the Pascal language, so that other static analysis
tools could also be written, but having the grammar and symbol table handling remain in common library
code. Thiscomplicates things, if we are going to have the tree nodes performing all the work, because this
would seem to imply that every tree node would include the methods necessary to perform all tasks and re-
uses of the grammar. Happily, this is not the case.

This paper is an extension of the earlierCompilers and Factoriespaper.

THE VIRTUAL KEYWORD
The key concept here is thevirtual keyword in C++. A virtual method is one that can have different
implementations in different derived classes. Thus,for our AST node to perform a different operation, it
must be a different derived class.

Some Revision
Long, long ago, there was no C++. Examples of AST representations dating from then would often have C
declarations like this:

struct expr_t
{

int kind;
union
{

int value;
struct
{

struct expr_t *lhs;
struct expr_t *rhs;

} p ;
} u ;

};
Manipulating these trees would involve a function such as this:

int
expr_evaluate(const struct expr_t *ep)
{

switch (ep−>kind)
{
case CONSTANT:

return ep−>u.value;

case PLUS:
return expr_evaluate(ep−>u.p.lhs)

+ expr_evaluate(ep−>u.p.rhs);

Reference Manual ucsd-psystem-xc 14

Internals(1) Internals(1)

case MINUS:
return expr_evaluate(ep−>u.p.lhs)

− expr_evaluate(ep−>u.p.rhs);

etc
}

}
Each time you wanted to add a new kind of expression node, you had to visit each of these functions, and
add another switch case. This can become an expensive maintenance problem, and also lead to version
control bottlenecks for the development team.

In order to be able to add code in the future, but not have these problems, it is necessary to split the problem
into pieces, using pointers to functions:

expr_evaluate(const struct expr_t *ep)
{

return (*ep−>evaluate_method)(ep);
}

This means our struct declaration changed as well
struct expr_t
{

int (*evaluate_method)(const struct expr_t *ep);
union
{

int value;
struct
{

struct expr_t *lhs;
struct expr_t *rhs;

} p ;
} u ;

};

Notice, in particular, that thekind member is now gone, replaced by one or more function pointers. In
practice, this tends to be a pointer to a struct full of function pointers, one for each task, because this
simplifies the creating of new AST nodes.

All of which means that our actual evaluation comes in separate pieces:
int
expr_constant_evaluate(const struct expr_t *ep)
{

return ep−>u.value;
}

int
expr_plus_evaluate(const struct expr_t *ep)
{

return expr_evaluate(ep−>u.p.lhs)
+ expr_evaluate(ep−>u.p.rhs);

}

The actual implementation would have these in separate compilation units. Now that we have split this up,
it would also be possible to do away with the union, andmalloc AST nodes of the appropriate size.

If anyone has done this manually, you will know that there is a lot of machinery that needs to be kept in
sync. Muchof this machinery is done for you by C++, and it also adds some rigor to the types of nodes,
avoiding the numerous type casts required when doing the same thing manually. The C++ could would
look something like this:

Reference Manual ucsd-psystem-xc 15

Internals(1) Internals(1)

class expression
{
public:

virtual int evaluate(void) const = 0;
};

and the implementations
class expression_plus:

public expression
{
public:

int
evaluate(void)

const
{

return lhs−>evaluate() + rhs−>evaluate();
}

private:
expression *lhs;
expression *rhs;

};

The key thing to notice is that we replaced thekind member with a “vtable”, and switches onkind with
virtual methods.

Flow Of Control
Once all of the machinery is in place, adding a new kind of expression AST node simply means deriving a
new class, and implementing the appropriate methods, such asevaluatein the above example. Ifyou are a
new dev eloper on the team, and you didn’t see the machinery unfold, and implemented the first few classes,
just how the code actuallyreachesyour virtual method can be a bit of a mystery.

The first thing to remember is what avirtual method is. It is a type-based dispatch mechanism. There
many only be a single call to that method in the entire program, and yet there could be tens or hundreds of
implementations of that method. There is no voodoo here, no magic. If it were done long-hand, as in the
fi rst example, confusion rarely arises. Just think of it as the same thing, only distributed differently
amongst the source files.

The second thing to remember is that you oftendon’t carehow the code is called, because that mechanism
has already been debugged. Whenflow of control does get to you, all you care about is getting your bit
right.

Testability
Is using a virtual method inherently more difficult to test than the original C implementation? They both
have the same code, doing the same jobs, the code is merely distributed amongst the source files differently.
So, no, the testing burden is unchanged. Do not mistake the C++ verbosity for “more stuff to test”, and
remember that C++ isveryverbose.

Quite possibly, the separation of functionality by class means that you can have greater confidence that you
will not unintentionally break something else in the file, because you are not even editing the same files.

The Source Code
This concept may be found the theucsd-psystem-xcsource code in thelib/expression.h fi le, and its
derived classes may be found in thelib/expression/ derived.h and
tool/expression/ derived.h fi les (the directory hierarchy mirrors the class hierarchy). Theparser
can be found in thelib/pascal/grammar.y fi le.

THE FACTORY CONCEPT
A factory in this sense is a function that returns new instances of a class. Think of a parser that reads text,
parses it into expressions, and returns a pointer to the abstract syntax tree representing the parsed

Reference Manual ucsd-psystem-xc 16

Internals(1) Internals(1)

expression. Thisis an example of a factory.

Imagine that our (vastly simplified) yacc grammar looked like this:
expr

: N UMBER
{

$$ = constant_expr_factory($1);
}

| I DENTIFIER
{

$$ = name_expr_factory($1);
}

| e xpr ’+’ expr
{

$$ = plus_expr_factory($1, $3);
}

| e xpr ’−’ expr
{

$$ = minus_expr_factory($1, $3);
}

;

For each kind of expression, we have a factory that can build them for us. They are not especially
complicated:

expr *
constant_expression_factory(int value)
{

return new expr_constant(value);
}

But why wouldn’t we just put the same code into the grammar production {rules}? Because we wanted to
re-use the grammar.

VIRTUAL F ACTORIES
The grammar can be re-used by more than one translation task if we add a context object, and some virtual
methods:

expr
: N UMBER

{
$$ = ctx−>constant_expr_factory($1);

}
| I DENTIFIER

{
$$ = ctx−>name_expr_factory($1);

}
| e xpr ’+’ expr

{
$$ = ctx−>plus_expr_factory($1, $3);

}
| e xpr ’−’ expr

{
$$ = ctx−>minus_expr_factory($1, $3);

}
;

And thectx variable is a pointer to
class translator

Reference Manual ucsd-psystem-xc 17

Internals(1) Internals(1)

{
public:

virtual expr *constant_expr_factory(int) = 0;
virtual expr *name_expr_factory(int) = 0;
virtual expr *plus_expr_factory(expr *, expr *) = 0;
virtual expr *minus_expr_factory(expr *, expr *) = 0;
etc

};

By deriving differenttranslator classes, we can have one translator that implements a compiler, one
that implements a pretty printer, one that calculates cyclomatic complexity statistics,etc.

The compiler translator creates expression tree nodes that have an implementation that compiles the
expressions. Thepretty printer translator creates different expression tree nodes that have an
implementation that prints the expressions out. And other static analysis tools each have their own
implementations.

Testability
Does this make programs that use this technique harder to test? The amount of code to be written is the
same, and does the same jobs. So, no, the testing burden is unchanged.

However, you have the advantage that the parser is common to all of the tools, and so bug fixes to the parser
are inherited by all tools. Change once, test everywhere? Notquite: if you hadn separate yacc files, all
with the same bug, you would have to maken identical changes, and re-testn tools. Testing burden
unchanged,but the probability of unintentionally diverging grammars becomes zero.

Flow Of Control
The need to understand the flow of control comes when the developer is testing a new derivation of the
translator class. Thegrammar, and its connection to the translator context has already been written
and tested, all you need to do is test the newly derived class. Your test cases, then, must exercise each of
the new factory methods, one test for each of the expression productions, and flow of control will then enter
each of the factory methods.

The Source Code
This concept may be found the theucsd-psystem-xcsource code in thelib/translator.h fi le, and its
derived classes may be found in thetool/translator/ derived.h fi les.

FA CTORY FACTORIES
The wheels of this context concept would appear to start to come off when we consider assignment
expressions. Agrammar for a C-like language could look like this:

expr
: I DENTIFIER

{
$$ = ctx−>name_expr_factory($1);

}
| e xpr ’=’ expr

{
$$ = ctx−>assignment_expr_factory($1, $3);

}
| e xpr ’+’ expr

{
$$ = ctx−>plus_expr_factory($1, $3);

}
;

How does our name expression factory know which side of the assignment it is on? At code generation
time, should it emit a load opcode or a store opcode?We don’t know... yet. What we do know is that loads
are much more likely than stores, so we initially generate expression trees that would perform loads.

But this just pushes the problem into theassignment_expr_factory method. Inorder to figure out

Reference Manual ucsd-psystem-xc 18

Internals(1) Internals(1)

what kinds of assignment opcode to use, it would be necessary to figure out what kind of load opcode is
present, and generate the corresponding store

expression *
translator_compiler::assignment_expr_factory(expression *e1, expression *e2)
{

const expr_load *test1 =
dynamic_cast<const expr_load *>(e1);

if (test1)
return new expr_store(e1−>get_operand(), e2);

const expr_array_load *test2 =
dynamic_cast<const expr_array_load *>(e1);

if (test2)
return new expr_store_array(e1−>get_lhs(), e1−>get_rhs(), e2);

yyerror("inappropriate assignment");
return new expression_error();

}

This makes me cringe. Those down-casts have my alarm bells going off. And all those getters so that AST
node privates can be groped, ugh! But what alternative is there? To answer that, let’s backtrack for a
moment. Ourvery first example can be re-written like this:

int
expr_evaluate(const struct expr_t *ep)
{

if (ep−>kind == CONSTANT)
return ep−>u.value;

if (ep−>kind == PLUS)
return expr_evaluate(ep−>u.p.lhs)

+ expr_evaluate(ep−>u.p.rhs);

if (ep−>kind == MINUS)
return expr_evaluate(ep−>u.p.lhs)

− expr_evaluate(ep−>u.p.rhs);

etc
}

The chain ofif statements inassignment_expr_factory is aswitch in disguise, a type-based
dispatch in disguise.We should be using a virtual method instead.

But in which class should we place the virtual method? Clearly, it isn’t inside thetranslator class,
since we tried it there already. The type-based dispatch is based on the expression type, and that is where
the virtual method lives, in theexpression class:

expr: expr ’=’ expr
{

$$ = $1−>assignment_expr_factory($3);
}

No, no, no, that can’t be right: thectx object doesn’t get any chance to intervene. Exceptthat it does:
when it created the left hand side in the first place.

By creating, say, a compiler specific “load” AST node, it also created the assignment factory; they are the
same object. There is no way a pretty printer assignment object will ever be created by a compiler load
object (unless you deliberately code it that way).

Note, too, that the error-prone down-casts aregone, as is the need to grope anyone’s privates. Andthe code

Reference Manual ucsd-psystem-xc 19

Internals(1) Internals(1)

is faster, too, by eliminating the slow down-casts and multiple tests.

The sharp-eyed reader will have noticed that we have omitted the error case. What happens when it goes
wrong? Theeasiest way is to have the common base class aways emit an error complaining about an
inappropriate assignment, unless overridden.

expression *
expression::assignment_expr_factory(expression *, expression *)
{

yyerror("inappropriate assignment");
return new expression_error();

}

In summary, our name_expr_factory method manufactured an object that, in turn, contains an
assignment_expr_factory method, used to manufacture more AST nodes.We now hav ea factory
factory.

Testability
My head is starting to explode. Surelynowthere are combinatorial effects on testing!

Well, yes and no.Yes, programming languages by definition are capable of combinatorial effects when it
comes to all the ways you can put together different expressions to build different programs; that is
unchanged, compilers needlotsof testing.

And, no, the factory factories do not making the testing burden worse. They are, after all, implementing the
same thing, often with the same code, albeit distributed differently amongst the classes.

Flow Of Control
If I’m a developer adding a new type of assignment to an existing complier implemented this way, how to I
know when execution will reach my shiny new expression class’assignment_expr_factory
method? Well, the same way you would have when it was imperative code: write a test with that kind of
assigment in it, and hand it to the parser. Remember: you aren’t testing the parser part of the code, only
your new assignment type (class).

The Source Code
This concept may be found the theucsd-psystem-xcsource code in thelib/expression.h fi le, and its
tool-specific derived classes may be found in thetool/expression/ derived.h fi les.

FA CTORY FACTORY FACTORIES
Now we turn our attention to thename_expr_factory method. It’s been trying to look all innocent
and inconspicuous.

expression *
translator_compiler::name_expr_factory(const char *name)
{

symbol *sp = lookup(name);
if (!sp)
{

yyerror("name unknown");
return new expr_error();

}

const symbol_extern *test1 =
dynamic_cast<const symbol_extern *>(sp);

if (test1)
return new expr_load_extern(sp);

const symbol_static *test2 =
dynamic_cast<const symbol_static *>(sp);

if (test2)
return new expr_load_static(sp);

Reference Manual ucsd-psystem-xc 20

Internals(1) Internals(1)

const symbol_local *test3 =
dynamic_cast<const symbol_local *>(sp);

if (test3)
return new expr_load_local(sp);

yyerror("can’t use name here");
}

This is another example of a type-based dispatch in disguise. But where does the virtual method belong?
Clearly, not in thetranslator class or derivative, we already tried that. Instead, we implement it in the
symbol class, as follows:

expression *
translator::name_expr_factory(const char *name)
{

symbol *sp = lookup(name);
if (!sp)
{

yyerror("name unknown");
return new expr_error();

}
return sp−>name_expr_factory();

}

We moved thename_expr_factory into thetranslator base class, because it is now identical
across all derived classes, because it no longer needs to know about compiler-specific classes.

As in the previous section about assignment expressions: doing symbol accesses this way means that the
advantages are the same, the testing burden unchanged, and the error handling is the same.

In summary, thetranslator::name_expr_factory method looked up asymbol object that, in
turn, contains aname_expr_factory method, used to manufactureexpression AST nodes, that in
turn containassignment_expr_factory methods, used to manufacture moreexpr AST nodes.We
now hav ea factory factory factory.

The Source Code
This concept may be found the theucsd-psystem-xcsource code in thelib/symbol.h fi le, and its
derived classes may be found in thelib/symbol/ derived.h andtool/symbol/ derived.h
fi les.

FA CTORY**4
Have you thought about variable scopes in Pascal? Byhaving different scopes forprogram s and
function s (because their variables are accessed by different opcodes) when a new variable is declared,
you ask the currentscope to manufacture a newsymbol instance that... you get the idea.

The Source Code
This concept may be found the theucsd-psystem-xcsource code in thelib/scope.h fi le, and its derived
classes may be found in thelib/scope/ derived.h andtool/scope/ derived.h fi les.

COPYRIGHT
ucsd-psystem-xcversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsd-psystem-xcprogram comes with ABSOLUTELY NO WARRANTY; for details see the LICENSE
fi le in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

Reference Manual ucsd-psystem-xc 21

Internals(1) Internals(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 22

ucsdpsys(1) ucsdpsys(1)

NAME
ucsdpsys − UCSD p-System launcher

SYNOPSIS
ucsdpsys[option...]
ucsdpsys −V

DESCRIPTION
Theucsdpsysprogram is used to start an instance of the UCSD p-System virtual machine, providing it with
the necessary system volumes to function. This is done by wrapping theucsdpsys_vm(1) command,
possibly performing disk image operations before and after via theucsdpsys_disk(1) command.

OPTIONS
The following options are understood:

−a

−−apple Execute the virtual machine in Apple compatibility mode, initialized using the same addresses as
the original Apple][p-System.

−b filename

−−batch=filename
Start the virtual machine in batch mode. Input is read fromfilename, output is written to the
standard output (unless−x is used). If “−” is specified, the standard input is used.

−f filename

−−forget=filename
Access thefilenameas a read-write disk image, but changes to the disk image are never written
back to the file and are forgotten when the virtual machine stops. If a directory is specified, a
temporary disk image is created withucsdpsys_mkfs(1), and the contents of the directory are read
into it before the virtual machine starts.

−g

−−debug
Run the virtual machine in debug mode.

−N

−−no−system
This option may be used to avoid constructing a system disk image.For the system to boot, you
must provide a system disk using one of the−r or −f or −w options. Any −Soptions will be
ignored.

−n filename

−−name=filename
Uses the given filenameas the executable to launch. Defaults toSYSTEM.PASCALif not
specified. Thisfi le may be on any of the volumes, although it is traditional for it to be on the
SYSTEM:volume.

−P release-name

−−p−machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and the available opcodes). This defaults to “II.1” if not set.

−r filename

−−read=filename
Access thefilenameas a read-only disk image. If a directory is specified, a temporary disk image
is created, and the contents of the directory are read into it before the virtual machine starts.

Reference Manual ucsd-psystem-xc 23

ucsdpsys(1) ucsdpsys(1)

−Sdirectory

−−system=directory
This option give a directory to be searched for system files. Thisoption may be given more than
once. Ifthis option is not given, the files installed by theucsd-psystem-osanducsd-psystem-vm
packages will be used, if present.

−T

−−trace Trace execution of opcodes by the virtual machine.

−t filename

−−trace−file=filename
Write the execution trace to the given file. If “−” is given as thefilename, the trace will be
written on the standard output.

−V

−−version
Print the version of theucsdpsysprogram being executed.

−w filename

−−write=filename
Access thefilenameas a read-write disk image. If a directory is specified, a temporary disk
image is created, and the contents of the directory are read into it before the virtual machine
starts, and then read back out into the directory when the virtual machine stopes.

−x

−−xterm
Start anxterm(1) for CONSOLE:andSYSTERM:. Especially useful when using the debugger
and its messages are output to the standard output and stderr.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsyscommand will exit with a status of 1 on any error. Theucsdpsyscommand will only exit
with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_vm(1)

UCSD p-System virtual machine

ucsdpsys_disk(1)
manipulate UCSD p-System disk images.

ucsdpsys_mkfs(1)
create UCSD p-System disk images.

COPYRIGHT
ucsdpsysversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsysprogram comes with ABSOLUTELY NO WARRANTY; for details see the LICENSE file in
the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 24

ucsdpsys_assemble(1) ucsdpsys_assemble(1)

NAME
ucsdpsys_assemble − UCSD p-System cross assembler

SYNOPSIS
ucsdpsys_assemble[option...] filename

ucsdpsys_assemble −VERSion

DESCRIPTION
Theucsdpsys_assembleprogram is used to assemble low-level machine source code into UCSD p-System
code files. Theresult is not executable, it must be linked to a program in order to be executed.

OPTIONS
The following options are understood:

−A name

−−host=name
This option may be used to specify the machine architecture from the command line, as if there
was a.arch " name" pseudo opcode at the start of the source file. Thereis an equivalent
option for theucsdpsys_compile(1) command.

−I directory

−−include=directory
This option is used to specify an include file directory to search. This option may be given more
than once.

−J directory

−−view-path=directory
This option is used to specify a directory to append to the view path. Thisoption may be given
more than once.

−L filename

−−listing=filename
This option may be used to nominate a file to take the assembler listing.For each line of source
text the listing includes the address of the opcodes (in hex), the data bytes of the opcodes (in hex),
and the corresponding source line.

−o filename

−−output=filename
This option may be used to specify the code file the result s are written to. If not specified, the
extension is removed form the source file (if any) and a “.code ” extension is added.

−P release-name

−−p−machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and the available opcodes). This defaults to “II.1” if not set.

−V

−−version
Print the version of theucsdpsys_assembleprogram being executed.

All other options will produce a diagnostic error.

Reference Manual ucsd-psystem-xc 25

ucsdpsys_assemble(1) ucsdpsys_assemble(1)

EXIT STATUS
Theucsdpsys_assemblecommand will exit with a status of 1 on any error. Theucsdpsys_assemble
command will only exit with a status of 0 if there are no errors.

EXPRESSIONS
This section details the arithmetic expressions understood by the assembler. In general, these are the same
expression forms used by the UCSD native assembler; any exceptions will be noted.

Addition
You can add two integer values using the usual plus (e1“+” e2) operator.

Subtraction
You can subtract two integer values using the usual minus (e1“−” e2) operator.

Multiplication
You can multiply two integer values using the usual star (e1“* ” e2) operator.

Division
You can divide two integer values using the usual slash (e1“ / ” e2) operator. It is an error if a division
by zero is attempted.

Modulo
You can find the remainder of the division of two integer values using the usual percent (e1“%” e2)
operator. It is an error if a modulo by zero is attempted.

Unary Minus
You can negate an expression using the minus “(−e)” operator.

Unary Plus
You can unary plus an expression using the plus “(+e)” operator.

Grouping
Because parentheses are used to indicate other things in most addressing formats, parentheses can’t be
used for grouping. Insteadangle brackets are used: the expressions look like “< expr >” and this may
take some getting used to.

Bit-Wise Not
You can bit-wise AND an integer value using the tilde “(˜ e)” operator.

Bit-Wise And
You can bit-wise AND two integer values using the ampersand “(e1& e2)” operator.

Bit-Wise Or
You can bit-wise OR two integer values using the vertical bar “(e1 | e2)” operator.

Bit-Wise Exclusive-Or
You can bit-wise exclusive-or two integer values using the carat “(e1ˆ e2)” operator.

Equal
You can make equality comparisons, using the “(e1= e2)” operator.

Not Equal
You can make inequality comparisons, using the “(e1<> e2)” operator.

Less Than
You can make less than comparisons, using the “(e1.lt e2)” operator. Not present in the UCSD
native assembler.

Less Than Or Equal
You can make less than or equal comparisons, using the “(e1<= e2)” or “(e1.le e2)” operator. Not
present in the UCSD native assembler.

Greater Than
You can make greater than comparisons, using the “(e1.gt e2)” operator. Not present in the UCSD
native assembler.

Reference Manual ucsd-psystem-xc 26

ucsdpsys_assemble(1) ucsdpsys_assemble(1)

Greater Than Or Equal
You can make greater than or equal comparisons, using the “(e1>= e2)” or “(e1.ge e2)” operator.
Not present in the UCSD native assembler.

Operator Precedence
The precedence of the various operators is the same as for Pascal.

DIRECTIVES
This section details the pseudo-ops understood by the assembler. In general, these are the same pseudo-ops
used by the UCSD native assembler; any exceptions will be noted.

.arch
The.arch pseudo-op can be used to change the microprocessor architecture being assembled. (Not
present in the UCSD native assembler.)

.arch " name"

Thenameof the machine must be a quoted string constant. The names are caseinsensitive.

p-code-le
Assemble p-code assembler, little endian. This is the default, if no.arch is specified. Thedefault
radix will be set to decimal.

p-code-be
Assemble p-code assembler, big endian. The default radix will be set to decimal.

6502
Assemble Mos Technologies 6502 assembler (Apple][, KIM-1). The default radix will be set to
hexadecimal.

.asciz
This pseudo-op is similar to the.ascii pseudo-op, except that is always emits a NUL (0x00) character
after the string.

.else
See.if for documentation.

.end
Used to denote the physical end of an assembly. All input beyond this point is ignored. It is an error if this
directive is not present.

.endc
See.if for documentation.

.endif
This is a synonym of the.endc pseudo-op.

.endm
See.macro for documentation.

.error
This pseudo-op is used to output a message to the standard error stream.A common use of this directive is
to provide a diagnostic announcement of a rejected or erroneous macro call or to alert the user to the
existence of an illegal set of conditions specified in a conditional assembly.

The values of all the expressions are concatenated together. If you want spaces between them, use a
constant string expression.

.print "Oops."
This pseudo-op was inspired by the PDP-11 pseudo-op of the same name, but it is not quite identical in
operation.

.func
This pseudo-op identifies a function that returns a value. Two words of space to be used for the function
value will be placed on the stack after any parameters. A.func is ended by the occurrence of a new
.func , .proc , or .end .

Reference Manual ucsd-psystem-xc 27

ucsdpsys_assemble(1) ucsdpsys_assemble(1)

.func identifier [, expression]

Whereexpressionindicates the number of words of parameters expected by this function. The default is 0.

Symbols defined before the first procedure or function are preserved, however symbols defined within the
previous procedure or function are dropped. This gives each function a “clean slate” for its local symbols.

.if
The.if pseudo-op is used to conditionally assemble portions of the source code.

.if condition
:
:

.endc
It is also possible to specify anelsepart.

.if condition
:
:

.else
:
:

.endc
Conditionals can be nested.

Theconditionmust evaluate to either an integer (false is zero, true is any non-zero value), or a boolean
value.

.include
This pseudo-op is used to include another source file at this position in the source file.

.macro
The.macro pseudo-op is used to define macro-instructions. These can be used to group opcodes
together, along with appropriate parameters.

.macro pop
pla
sta %1
pla
sta %1+1
.endm

It is possible to use a macro anywhere you would use a normal opcode.Parameters are referenced using
%1, %2, etc.

.print
This pseudo-op is used to output a message to the standard error stream.A common use of this directive is
to provide a diagnostic announcement of a rejected or erroneous macro call or to alert the user to the
existence of an illegal set of conditions specified in a conditional assembly.

The values of all the expressions are concatenated together. If you want spaces between them, use a
constant string expression.

.print "Oops."
This is not treated as a fatal error.

This pseudo-op was inspired by the PDP-11 pseudo-op of the same name, but it is not quite identical in
operation.

.proc
This pseudo-op identifies a procedure that returns no value. A.proc is ended by the occurrence of a new
.proc , .func , or .end .

.proc identifier [, expression]

Whereexpressionindicates the number of words of parameters expected by this routine. The default is 0.

Reference Manual ucsd-psystem-xc 28

ucsdpsys_assemble(1) ucsdpsys_assemble(1)

Symbols defined before the first procedure or function are preserved, however symbols defined within the
previous procedure or function are dropped. This gives each procedure a “clean slate” for its local symbols.

.radix
The.radix pseudo-op can be used to change the default radix used by the assembler. (Not present in the
UCSD native assembler.)

.radix number

Thenumbermust be between 2 and 36.You may need to use one of the explicit number forms (next
paragraph) to cope with an unknown or undefined default radix.

You can always get a decimal number by using a dot (.) suffix. You can always get a hexadecimal number
by using aHsuffix (if the default radix is less than 19), or a C-style0x prefix (if the default radix is less
than 34).

As with the cross compiler, you can also specify a number with a radix and hash (#) prefix. For example,
an octal number could be written8#377 ; other radixes are also possible, such as13#42 . The radix base
before the hash (#) is always decimal, no matter what the default radix has been set to.

Note that the (implicit).arch pseudo-op also sets the default radix.

.sbttl
The.sbttl pseudo-op can be used to change the second of two lines of page title of the assembler listing.

.sbttl text

The text does not need to be quoted, and it may contain spaces. The effect of this opcode will be seen on
the next page heading printed. It is not possible to set both the title and the sub-title of the first page.

.title
The.title pseudo-op can be used to change the first of two lines of page title of the assembler listing.

.title text

The text does not need to be quoted, and it may contain spaces. The effect of this opcode will be seen on
the next page heading printed.To set the heading of thefirst page, this directive must be the first line in the
fi le.

SEE ALSO
ucsdpsys_compile(1)

A cross compiler from Pascal to UCSD p-System codefiles.

ucsdpsys_disassemble(1)
disassemble a UCSD p-System code file

ucsdpsys_link(1)
UCSD p-System codefile linker

COPYRIGHT
ucsdpsys_assembleversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_assembleprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 29

ucsdpsys_charset(1) ucsdpsys_charset(1)

NAME
ucsdpsys_charset − UCSD p-System font builder

SYNOPSIS
ucsdpsys_charset −e[input-text-file[output-binary-file]]
ucsdpsys_charset −V

DESCRIPTION
Theucsdpsys_charsetprogram is used to decode and encode font characters for use as the
SYSTEM.CHARSETfi le.

OPTIONS
The following options are understood:

−d

−−decode
Decode the binary font file into a text file which can be edited.

−e

−−encode
Encode a text file representation of the glyphs of the font into the binary for used for the
SYSTEM.CHARSETfi le.

−i

−−include
Encode a text file representation of the glyphs of the font into C code for an include file to define
an array of bytes of data.

−V

−−version
Print the version of theucsdpsys_charsetprogram being executed.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_charsetcommand will exit with a status of 1 on any error. Theucsdpsys_charsetcommand
will only exit with a status of 0 if there are no errors.

COPYRIGHT
ucsdpsys_charsetversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_charsetprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 30

ucsdpsys_compile(1) ucsdpsys_compile(1)

NAME
ucsdpsys_compile − compile Pascal source to UCSD p-System code file

SYNOPSIS
ucsdpsys_compile[option...] filename
ucsdpsys_compile −V

DESCRIPTION
Theucsdpsys_compileprogram is used to compile Pascal source code to UCSD p-System code files.

OPTIONS
The following options are understood:

−A name

−−host=name
This option may be used to specify the machine architecture from the command line, as if there
was a(*$feature host name*) comment at the start of the source file. Thereis an
equivalent option for theucsdpsys_assemble(1) command.

−f feature-name=value

−−feature=feature-name=value
Set the selected feature to the given boolean value. (Listof features may be found below.)

−f feature-name

−−feature=feature-name
Set the selected feature to true.

−f no-feature-name

−−feature=no-feature-name
Set the selected feature to false.

−I directory

−−include=directory
This option is used to specify an include file directory to search. This option may be given more
than once.

−J directory

−−view-path=directory
This option is used to specify a directory to append to the view path. Thisoption may be given
more than once.

−L directory

−−library-path= directory
This option may be used to add another directory to the list of directories to be searched for
library codefiles. Thisoption may be used more than once, directories will be searched in the
order specified.

−−listing=filename
This option maybe used to name a file to accept the compiler listing. By default, no listing is
produced. Thefi le name “−” is understood to mean the standard output. The listing will consist
of the source code interleaved with the disassembled p-code.

−l

−−long-addresses
This option may be used to emit addresses in into the listing as “sn pn onnn” (i.e. the segment
number, procedure number, and procedure offset). Thisis the same format used by the
ucsdpsys_cm(1) −−trace option, making it easier to cross reference from the trace back into the

Reference Manual ucsd-psystem-xc 31

ucsdpsys_compile(1) ucsdpsys_compile(1)

compiler listing. Has no effect without the−−listing option.

−o filename

−−output=filename
This option may be used to set the name of the output file. It defaults to the name of the source
fi le, with the suffix replaced with “.code ”.

−P release-name

−−p−machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and the available opcodes). This defaults to “II.1” if not set.

−V

−−version
Print the version of theucsdpsys_compileprogram being executed.

−v

−−verbose
Verbose. Statisticsabout the compilation are printed.

−W warning-name=value

−−warning=warning-name=value
Set the selected warning to the given boolean value. (Listof warnings may be found below.)

−W warning-name

−−warning=warning-name
Set the selected warning to true.For example, use “−Werror ” to turn all warnings into fatal
errors.

−W no-warning-name

−−warning=no-warning-name
Set the selected warning to false. For example, use “−Wno-shadow ” to disable shadow
warnings.

−y

−−grammar-trace
Turn on parse debugging. Very verbose. Intendedfor compiler developers only.

All other options will produce a diagnostic error.

ENVIRONMENT VARIABLES
UCSD_PSYSTEM_XC_LIBRARY_PATH

This is a colon-separated list of directories to be searched for codefiles containing library UNIT
segments.

EXIT STATUS
Theucsdpsys_compilecommand will exit with a status of 1 on any error. Theucsdpsys_compilecommand
will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_assemble(1)

UCSD p-System cross assembler, for multiple CPU types

ucsdpsys_disassemble(1)
A utility to disassemble UCSD p-System codefiles.

ucsdpsys_link(1)
UCSD p-System codefile linker

Reference Manual ucsd-psystem-xc 32

ucsdpsys_compile(1) ucsdpsys_compile(1)

COPYRIGHT
ucsdpsys_compileversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_compileprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 33

ucsdpsys_compile(1) ucsdpsys_compile(1)

DIFFERENCES
There are a number of differences between this cross compiler and the UCSD p-System native Pascal
compiler.

Policy
In developing the cross compiler, a number of design decisions had to be made. This section is more-or-
less how to decide what to do in the interesting places.

• When you can, do static analysis. Finding bugs at compile time is better than finding bugs at run time, or
worse, not finding them.

• Evaluate constant expressions at compile time (no warning required). It makes for smaller code, and it
also allows more static analysis.

• Adding a new feature is OK, but all new features must issue a warning that the native compiler can’t do
it, and all new features need a (*$warning*) setting to turn off the warning if the user is doing it on
purpose.

• Adding new features for better ISO 7185:1990 Standard Pascal compliance is a good thing.

• If new features are so different that they are disabled by default, and have a (*$feature*) setting to turn
them on, they don’t need a warning as well.

• There is no need to produce code that is identical to that produced by the native compiler. If you can
produce better code, without changing the meaning, or the results, go for it.

• Short circuit boolean evaluations subtly break at last one of the above policies, in the case where function
calls within the conditions have side effects. Whenwe have enough flow analysis to know if f unctions
have side effects, we can issue warnings.

• It is essential that parameters are pushed onto the stack identically to the native compiler, or system calls
will stop working. Thesame applies how parameters are allocated space in the stack frame.

• There is more leniency for variable allocations, especially temporary variables.

• There is some evidence, in the system utilities, of using weird negative array indexes to access system
internals. Thereis no need to try for backwards compatibility in this, and thus no need for identical stack
frame layouts, in order to preserve stack sizes for said weird negative offsets to continue to “work”.

• There is no need to reproduce native compiler bugs, provided that they really are bugs, and not mis-
features that programs relied on. This clause is last, because it shouldn’t be used very often.

At some point you are going to find stuff that is FUBAR: document it (see below).

Cross Compiler
It is called a cross compiler because, rather than generate native code for the system the compiler is running
on, it instead generates code to be run on a different system; in this case the UCSD p-System. The code
must be moved across to be executed.

Theucsdpsys_compile(1) program does not run natively on a UCSD p-System, so it does not have to be
invoked manually. The cross compiler can exist in a modern software development tool chain, and can be
executed by build tools such asmake(1).

You do not have to hav ea working UCSD p-System in order to compile UCSD Pascal programs. This
makes it possible to bootstrap a new UCSD p-System “from scratch”.

Error Reporting
The error messages are vastly improved. Wherever possible accurate location data is included in messages,
along with names and types.

The location of symbol declarations is tracked, so that errors relating to that symbol can refer back to the
declaration location.

If you have spent the last 25 years writing C (or some other language with C-like syntax) the compiler will
remind you whenever it sees an equality (=) operator where there should be an assignment (:=) operator.
This is more helpful than “syntax error”. Some other C-isms are also diagnosed.

Reference Manual ucsd-psystem-xc 34

ucsdpsys_compile(1) ucsdpsys_compile(1)

Declarations
The values presented to CONST declarations may be any expression, provided it evaluates to a constant
value at compile time.A non-constant will be an error (but not a syntax error).

When declaring array types, and integer subrange types, expressions within the declaration may be any
expression, provided they evaluate to constant values at compile time.

Boolean Expressions
The cross compiler uses short-circuit evaluation of boolean expressions. For example, if the result of a
logical AND expression can be determined from the left-hand side (being false) the right-hand side is never
evaluated. Similarly, if the result of a logical OR expression can be determined from the left hand side
(being true) the right-hand side is never evaluated.

The cross compiler also makes use of the NFJ and EFJ opcodes that were present in the p-machine used by
Apple Pascal, but were never generated by the Apple Pascal native compiler.

The UCSD native compiler did not allow nested SEGMENT procedures and functions. It would emit a
“399 Implementation restriction” error if you did so. The cross compiler does not have this restriction.

Lexical Enhancements
It is possible to use hexadecimal notation for integer constants, they hav ea leading dollar (“$”) followed by
hexadecimal digits, in either case. This feature is common in modern Pascal implementations, but was not
present in UCSD Pascal.

It is possible to use binary notation for integer constants, they hav ea leading percent (“%”) followed by
decimal digits. This feature is common in modern Pascal implementations, but was not present in UCSD
Pascal.

It is possible to use exponential notation for real constants. That is, numbers such as “1.2e6” are
recognized; exponents can be negative, too. Thisfeature is common in modern Pascal implementations, but
was not present in UCSD Pascal.

Reserved Words
The following identifiers are reserved keywords in this compiler: OTHERWISE, SCAN, SEPARATE,
SIZEOF, WRITE and WRITELN. They were not reserved words in the UCSD native compiler.

In the case of SCAN, SIZEOF, WRITE and WRITELN, this is because these functions do not fall into the
regular call grammar. The parameters of these calls are not simple expressions, or have the option of not
being simple expressions, but need additional grammar support.

OTHERWISE was added to case statements, see the relevant section of this man page.

SEPARATE is like EXTERNAL but there is no compiler support for this, yet; however this keywords does
appear in UCSD p-System sources.

Inline Variable Declarations
It is possible to declare variables in-line with the code.

function sqrt(x: real): real;
var

result, diff: real;
begin

result := x / 2;
repeat

begin
var approx := result − (sqr(result) − x) / (2 * result);
diff := abs(approx − result);
result := approx

end
until

diff < 1e−6;
sqrt := result

end

Reference Manual ucsd-psystem-xc 35

ucsdpsys_compile(1) ucsdpsys_compile(1)

Theapproxtemporary variable is created on-the-fly and the symbol is forgotten at the end of the enclosing
begin end scope. Thestorage it used is released, and may be re-use in another, later,begin end
scope. Therepeat until statement is slightly different, variables declared in-line persist until the end
of the until condition, so that variables create inside the loop may be used to control the loop.

This feature was not present in UCSD Pascal. Itwas introduced to the cross compiler principally to verify
the temporary variable behavior required by somewith andfor statements.

Bit-wise Operators
The compiler has some extensions present in modern Pascal compilers, allowing bit-wise operations on
integers,

In addition to logical NOT expressions, the cross complier understands bit-wise NOT expressions. They
have the same notation and precedence, but take an integer operand and the result is an integer.

In addition to logical AND expressions, the cross complier understands bit-wise AND expressions. They
have the same notation and precedence, but take integer operands and the result is an integer.

In addition to logical OR expressions, the cross complier understands bit-wise OR expressions. They hav e
the same notation and precedence, but take integer operands and the result is an integer.

The bit-wise operators do not use short-circuit evaluation.

Labels and Goto
It is possible to have named labels, not just numeric labels.Warnings rather than errors are issued when a
goto statement is used.

If Statement
As mentioned in Boolean Expressions, above, the if statement uses short circuit evaluation for the control
statement.

If control expression is constant, only the code for the relevant branch is generated.

Case Statement
It is possible to place an OTHERWISE clause at the end of CASE statements. It will be used for all values
not matching one of the preceding case values.

Case values (to the left of the colon) may be any expression, provided they evaluate to constant values at
compile time.

Pathological uses of CASE statements that produce a huge code explosion are diagnosed, and a much more
informative error message is produced than that of the UCSD p-System native compiler.

The native compiler generates XJP opcodes with the following table always pointing backwards to each of
the cases (each is positive). Thisrequires an unconditional branch around all of the cases to the XJP
opcode at the end. The(*$feature short-case true*) control comment may be used to reverse
this order. This generates code that is slightly smaller, slightly faster, and uses forward pointing self
relative pointers (i.e.each is negative). Whilenegative self-relative pointers work correctly on the Klebsch
implementation, it isn’t known if they work correctly on all p-machine implementations (they should,
signed and unsigned subtraction are the same thing on twos-compliment machines).

Code Size
The native UCSD p-System compiler was constrained in the amount of memory it had available for
generating code. Function bodies were limited to about 1200 bytes of code, and segments were limited to
about 28000 bytes total for all functions in the segment.

Theucsdpsys_compile(1) command is able to generate segments as large as 65534 bytes, which is patently
overkill for running on a 64kB system, because you wouldn’t be able to load it into memory, the system
segments wouldn’t hav eleft enough room. Functions can be as large as you want, provided they all fit into
their segment. Truly huge procedures may run out of jump table entries, however, because there is no way
to increase the limit of 64.

The native UCSD Pascal compiler also has a limit of 140 functions per segment. This,again, was a
memory size constraint. The cross compiler can have up to 255 functions per segment (the limit of

Reference Manual ucsd-psystem-xc 36

ucsdpsys_compile(1) ucsdpsys_compile(1)

addressability) without difficulty.

When possible constant expressions, or constant parts of expressions, are evaluated at compile time, and
inserted into the code as constants. This is usually less code than the native compiler produces.

Control Comments
There are a number of control comments that have been added, to fine tune the operation of the cross
compiler. All control comment names are case-insensitive.

(*$b*) Synonym for (*$feature big-endian true*)

(*$d+*) Synonym for (*$feature debug true*)

(*$f*) Synonym for (*$feature big-endian true*)

(*$featurename value)
This control comment is used to set a number of compiler features.You can also control features
from the command line, using the−f option. Thefeatures are:

big-endian [bool]
This control comment tells the compiler will produce big-endian p-code rather than the
default little-endian. Defaults to false.

chr-range-checkbool
This control comment is used to enable (true) or disable (false) the generation of range
checking opcode around CHR parameters. Defaults to false.

The range checks are only issued if this feature and the regularrange-checkfeature are
both true.

debug [bool]
This control comment many be used to turn on (true) or off (false) the generation of
break point (source code line) opcodes into the output. Defaults to false.

efj-nfj bool
This option may be used to control the use of EFJ and NFJ opcodes (used to optimize
some branch conditions) in the unlikely case where they are not available on your p-
Machine implementation. (The Apple p-machine has them, and so does the Klebsch p-
machine). Defaults to true, generate these opcodes.

extra-set-comparisonsbool
This option says to the LES POWR and GRT POWR opcodes. Thesewere not present
in the original UCSD p-machine, and the compiler does not use them by default.

ignore-undefined-segment-zerobool
The compiler always checks for procedures and functions that were declared forward,
but were not later defined, and issues a fatal error for each such symbol. This option
tells the compiler to ignore procedures from segment zero that were declared forward,
but were not defined. Thisis only of use to system utilities. Defaults to false.

You can turn this on and off for specific symbols. The setting takes effect for all
subsequent function and procedure declarations, if they are in segment zero.To affect
all of them, you must put the control comment at the start of the file, or on the
command line.

inline-mathbool
This flag is used to enable or disable the use of built-in math and trig functions that
correspond to p-machine opcodes. These were not in the Apple Pascal p-Machine
(presumably) due to size constraints, but the p-machine spec still defines them.

This flag defaults to false, meaning you have to use the TRANSCENDENTAL unit if
you want math functions.

This flag must be set prior to the PROGRAM or UNIT keywords, as it affects the
contents of the built-in symbol table.

Reference Manual ucsd-psystem-xc 37

ucsdpsys_compile(1) ucsdpsys_compile(1)

iocheckbool
This control comment tells the compiler whether or not to issue IOCHECK opcodes
after I/O statements. Defaults to true.

little-endian [bool]
This is the opposite of thebig-endianoption. Defaults to true.

long-integer-constantsbool
This option may be used to control constant folding of INTEGER[n] expressions, and
the presence of long integer constants in the code. Defaults to true.

long-integer-extensionsbool
This option may be used to control the use of INTEGER[n] opcode extensions (ABS,
MOD, ODD, SQR) in the p-machine. Defaults to false (most p-machine
implementations don’t hav ethem).

maximum-name-lengthinteger
The maximum length of an identifier. The setting must be in the range 8..32767.
Defaults to 8, just as the UCSD native Pascal compiler did.

range-checkbool
This control comment is used to enable (true) or disable (false) the generation of range
checking opcode around array indexing and some assignments. Defaults to true.

short-casebool
This control comment may be used to enable (true) or disable (false) the use of a
shorter technique to generate CASE statements. Defaults to false.

short-withbool
This control comment may be used to enable (true) or disable (false) the use of a
shorter technique to generate the implicit dot expressions required by WITH
statements. Whenenabled, if the base address in the WITH statement is simple
enough, not temporary pointer value is created. When disabled, or when the base
address expression is sufficiently complicated, a temporary pointer variable is used, just
as in the UCSD native compiler. Defaults to true.

tiny bool
This control comment may be used to enable (true) or disable (false) several of the
built-in functions. This was a space-saving measure in the UCSD native compiler.
Defaults to false.

underscore-significantbool
This control comment may be used to modify the significance or underscores in
identifiers (names). Setting to true gives ISO 10206 conforming behavior. Defaults to
false, just as the UCSD native compiler did.

userbool
This control comment may be used to enable (true) or disable (false) user-mode
compiling. Defaults to true.

The use of (*$feature user false*) produces system programs which use a different set
of segments, and disable a number of other checks. This is used when compiling the
UCSD p-System itself, and a number of other system utilities.

Other feature names will elicit diagnostic error messages.

(*$g+*) Synonym for (*$warning goto false*)

(*$I−*) Synonym for (*$feature io-check false*)

(*$I filename*)
Synonym for (*$includefilename*)

Reference Manual ucsd-psystem-xc 38

ucsdpsys_compile(1) ucsdpsys_compile(1)

(*$includefilename*)
Include the named source file at this point in the code. The filename may not contain white space
or comma characters.

(*$r−*) Synonym for (*$feature range-check false*)

(*$r+*) Synonym for (*$feature range-check true*)

(*$t+*) Synonym for (*$feature tiny true*)

(*$u−*) Synonym for (*$feature user false*)

(*$warningname value*)
This control comment is used to enable and disable the various warnings produced by the
compiler. You can also control warnings from the command line, using the−W option. The
warnings are:

address-ofbool
This enables (true) or disables (false) the warning the accompanies the use of the
address-of operator. The address-of operator “@” allow you to take the address of a
variable. Mostmodern Pascal implementation have this, but the original UCSD p-
System Pascal did not. Defaults to true.

constant-branchbool
This enables (true) or disables (false) warnings about constant control expressions for
IF, WHILE, REPEAT UNTIL, and CASE statements. Defaults to true.

binary-constantbool
The ability to write binary constants is a common feature of modern Pascal
implementations, however they were not present in UCSD Pascal. Whenthis flag is
true, warnings are issued for binary constants (%01010) in the source code. When this
flag is false, binary constants are silently accepted. Defaults to true.

empty-parenthesesbool
This control comment may be used to enable (true) or disable (false) the warning that
accompanies the use of empty parentheses for function calls and declarations. This is a
C coder coping strategy. Defaults to true.

error [bool]
When this flag is true, all enabled warnings are treated as compile errors. When this
flag is false, warnings do not cause the compile to fail. Defaults to false.

gotobool
This control comment may be used to enable (true) or disable (false) the warning is
issued when the GOTO statement appears in the source code. Given that goto is
considered harmful, it defaults to true.

hex-constantbool
The ability to write hexadecimal constants is a common feature of modern Pascal
implementations, however they were not present in UCSD Pascal. Whenthis flag is
true, warnings are issued for hexadecimal constants ($XX) in the source code. When
this flag is false, hexadecimal constants are silently accepted. Defaults to true.

named-labelbool
Named labels are a common feature in modern Pascal compilers, but they are not
present in the native compiler. When this flag is true, named labels are complained
about. Whenthis flag is false, named labels are silently accepted. Defaults to true.

otherwisebool
This option controls whether or not to issue a warning when an OTHERWISE clause is
seen attached to a CASE statement. This is common in modern Pascal
implementations, but was not present in UCSD Pascal. Defaults to true.

Reference Manual ucsd-psystem-xc 39

ucsdpsys_compile(1) ucsdpsys_compile(1)

shadowbool
Shadowing occurs when declaring a symbol (function, variable,etc) blocks access to a
symbol declared earlier. This almost always creates a maintenance problem. Set this to
true to issue warnings when symbols are shadowed, set this to false to silence shadow
warnings. Defaults to true.

set-comparisonsbool
This warning is issued if set<set or set>set comparisons are mode. The UCSD native
Pascal compiler did not accept such expressions.

silentbool
When this flag is set to true, no warnings at all are produced (this is effectively a
warning master disable). When this flag is set to false, warnings are printed. Defaults
to false.

Other warning names will elicit diagnostic error messages.

ternary-expressionbool
This option is used to enable or disable warning when C-style ternary expressions (e1?e2:e3) are
encountered. Defaults to true.

unreachablebool
This option is used to enable or disable warning when unreachable statements are found by the
compiler. Unreachable statement are those for which the follow of execution does no flow into
them from the previous statement, and statements that do not have a label. Bydefault, this
warning is enabled.

Compiling Separate Units
The UCSD native compiler is able to compile programs in several separate compilation units, an either link
them with the system linker, or link them implicitly at runtime if they are intrinsic units. How this was
accomplished evolved over time, the cross compiler duplicates the II.1 implementation.

Some examples may help. This following code is what you may expect of a separate unit
(*$S+*)
separate unit frog;
interface

const fly_size = 10;
type wart_type = (green, brown);
procedure jump(dist: integer);
function warts: integer;

implementation

const pi = 3.14159;
type etc = 0..13;

procedure jump;
begin
end;

function warts;
begin

warts := 0;
end;

end.
The II.1 compiler issues an error if the (*$S+*) was not present, the cross compiler will issue a warning.
The II.1 compiler issued an error for the SEPARATE keyword, the cross compiler issues a warning.

Reference Manual ucsd-psystem-xc 40

ucsdpsys_compile(1) ucsdpsys_compile(1)

System units, ones that needed to access the system global variables at lex lev el −1, used a different syntax.
This was never documented anywhere, as far as I can tell.

(*$S+*)
(*$U−*)
program pascalsystem;

separate unit frog;
interface

const fly_size = 10;
type wart_type = (green, brown);
procedure jump(dist: integer);
function warts: integer;

implementation

const pi = 3.14159;
type etc = 0..13;

procedure jump;
begin
end;

function warts;
begin

warts := 0;
end;

end;

begin
end.

The II.1 compiler issues an error if the (*$S+*) or (*$U−*) was not present, the cross compiler will issue a
warning. TheII.1 compiler issued an error for the SEPARATE keyword, the cross compiler issues a
warning.

In summary: omit the SEPARATE keyword.

FUBAR: Fouled Up Beyond All Recovery
See the “Policy” section, above.

The CHR built-in doesn’t actually do anything. Thatmeans that chr(32767) has the same value on the
stack, it doesn’t do a C-style value cast of masking its operand with 0xFF. Most of this brain damage can
be found by using the the (*$feature chr-range-check true*) control comment. Constant foul ups will be
found at compile time.

The ODD built-in doesn’t actually do anything, the same vales is on the stack, it doesn’t do a C-style cast of
masking its operand with 1. The boolean branch opcodes just look at the bottom bit. Constant folding by
the compiler doesn’t hav ethis behavior.

Reference Manual ucsd-psystem-xc 41

ucsdpsys_depends(1) ucsdpsys_depends(1)

NAME
ucsdpsys_depends − UCSD Pascal file dependency tracker

SYNOPSIS
ucsdpsys_depends[option...] filename...
ucsdpsys_depends −VTheucsdpsys_dependsprogram is used to scan a Pascal source file for include
directives.

OPTIONS
The following options are understood:

−I directory

−−include=directory
This option is used to specify an include file directory to search. This option may be given more
than once.

−J directory

−−view-path=directory
This option is used to specify a directory to append to the view path. Thisoption may be given
more than once.

−L

−−one-per-line
The dependencies are usually written all on the one line. This option requests that each be on a
separate line.

−o filename

−−output=filename
This option may be used to specify the output file. Defaults to the standard output.

−P string

−−prefix=string
The prefix to put at the start of the output line.

−r

−−recursive
This option may be used to request recursive analysis. Becausecook(1) cascade directives are
being used, recursive analysis is rarely needed.

−Sstring

−−suffix=string
The suffix to put at the end of the output line.

−V

−−version
Print the version of theucsdpsys_dependsprogram being executed.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_dependscommand will exit with a status of 1 on any error. Theucsdpsys_dependscommand
will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_compile(1)

UCSD p-System Pascal compiler

Reference Manual ucsd-psystem-xc 42

ucsdpsys_depends(1) ucsdpsys_depends(1)

COPYRIGHT
ucsdpsys_dependsversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_dependsprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 43

ucsdpsys_disassemble(1) ucsdpsys_disassemble(1)

NAME
ucsdpsys_disassemble − disassemble a UCSD p-System code file

SYNOPSIS
ucsdpsys_disassemble[option...] filename
ucsdpsys_disassemble −V

DESCRIPTION
Theucsdpsys_disassembleprogram is used to

OPTIONS
The following options are understood:

−a

−−no−address
Do not include addresses in the output. This makes automated testing easier when just a byte or
two is added, it stops the diff being unhelpfully large.

−c

−−comment
Add a descriptive comment for each opcode.

−e

−−extend
This option is used to include the structure of the codefile itself in the listing.

−o filename

−−output=filename
Write the output to the named file, rather than the standard output.

−P release-name

−−p−machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and the available opcodes). This defaults to “II.1” if not set.

−V

−−version
Print the version of theucsdpsys_disassembleprogram being executed.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_disassemblecommand will exit with a status of 1 on any error. Theucsdpsys_disassemble
command will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_assemble(1)

UCSD p-System cross assembler, for multiple CPU types

ucsdpsys_compile(1)
A cross compiler from Pascal to UCSD p-System codefiles.

COPYRIGHT
ucsdpsys_disassembleversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_disassembleprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

Reference Manual ucsd-psystem-xc 44

ucsdpsys_disassemble(1) ucsdpsys_disassemble(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 45

ucsdpsys_downcase(1) ucsdpsys_downcase(1)

NAME
ucsdpsys_downcase − convert Pascal to lower case

SYNOPSIS
ucsdpsys_downcasefilename...

ucsdpsys_downcase −−version

DESCRIPTION
Theucsdpsys_downcaseprogram is used to convert Pascal source code from upper case to lower case. It
leaves the contents of string constants, character constants and comments unaltered, but converts all
program text to lower case.

Pascal is case-insensitive for all identifiers, so this is a safe thing to do. It will not change program
semantics.

Each file named on the command line will be converted in place. If no files are named, the standard input
is converted and written to the standard output.

OPTIONS
The following options are understood:

−V

−−version
Print the version of theucsdpsys_downcaseprogram being executed.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_downcasecommand will exit with a status of 1 on any error. Theucsdpsys_downcase
command will only exit with a status of 0 if there are no errors.

COPYRIGHT
ucsdpsys_downcaseversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_downcaseprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 46

ucsdpsys_errors(1) ucsdpsys_errors(1)

NAME
ucsdpsys_errors − UCSD p-System assembler error file builder

SYNOPSIS
ucsdpsys_errors[option...][infile [outfile]]]]
ucsdpsys_errors −−version

DESCRIPTION
Theucsdpsys_errorsprogram is used to translate an assembler error file from its text for to its binary form,
and back again.

OPTIONS
The following options are understood:

−A name

−−architecture=name
This option is used to specify the architecture of the assembler in use.

−d

−−decode
This option is used to specify a translation from binary to text form is required. This can be
useful for reverse engineering the text when all you have is the binary form.

−e

−−encode
This option is used to specify a translation from text to binary is required. The binary form is
used to simplify the error reporting code.

−V

−−version
Print the version of theucsdpsys_errorsprogram being executed.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_errorscommand will exit with a status of 1 on any error. Theucsdpsys_errorscommand
will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_errors(5)

UCSD p-System assembler error file format

COPYRIGHT
ucsdpsys_errorsversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_errorsprogram comes with ABSOLUTELY NO WARRANTY; for details see the LICENSE
fi le in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 47

ucsdpsys_history(1) ucsdpsys_history(1)

NAME
ucsdpsys_history − UCSD Pascal notes and archaeology

DESCRIPTION
This document is an attempt to collect together historical information about the UCSD Pascal system.
Including who wrote it, notes about is various idiosyncrasies, and how to boot a p-System “from scratch”.

It may be that this information more properly belongs in Wikipedia.
[http://en.wikipedia.org/wiki/Ucsd_pascal] With an eye towards this, all sources are being annotated with
their URL.

ARCHAEOLOGY
This section covers the historical period from 1977-ish, when UCSD Pascal project was initiated, to
1983-ish, when progress of languages and systems had basically left UCSD Pascal behind.

Predecessors
Urs Ammann, a student of Niklaus Wirth, originally presented a p-code in his PhD thesis − see Urs
Ammann,On Code Generation in a Pascal Compiler, Software Practice and Experience, Vol. 7, No. 3,
1977, pp. 391-423, from which the UCSD implementation was derived, the Zurich Pascal-P
implementation. The UCSD implementation changed the Zurich implementation to be “byte oriented”.
[15] [16]

Using a tool developed in response to the SCO kerfuffle
(http://en.wikipedia.org/wiki/SCO−Linux_controversies), Andrew Tridgel’shashmatchtool
(http://samba.org/˜tridge/hashmatch/), or even the venerablediff(1) command, it can be seen that there are
significant similarities between the P2 compiler (http://www.standardpascal.com/p2/pcomp.pas) and the
UCSD Pascal I.3 compiler posted to CompuServe
(http://tech.groups.yahoo.com/group/UCSDPascal/files/Compiler/). Thenumbersand the names of the
opcodes for both the P2 compiler and the UCSD 1.3 compiler are all but identical.

The P2 compiler was made available in 1974, and Ken Bowles obtained a copy that same year, and saw that
it had the potential to be ported to the microprocessors of the day [1]. The project that was to be UCSD
Pascal was up and running by Oct−1974 [2].

PUG Newsletter 4
[9] 1975-Aug-22.We are indeed working with PASCAL on the B6700. Whether the work is of immediate
interest to you is another question. Making PASCAL into a stable B6700 product for users is a secondary
objective of our project. Our primary aim is to create an interactive student debugging environment on the
PDP-11 with virtually all of the software written in PASCAL.

[9] The overall objectives of the project are described in the enclosed project prospectus. Students will
interact with PASCAL on the small machines in a manner very reminiscent of APL on IBM 360/370.
PASCAL is interpreted using a modified version of the Zurich P-Machine recently released. The main
purpose of the modifications is to reduce the the size of the compiled code so that the PASCAL compiler
can fit within core of a small the limited machine.Yes, we have done the same kinds of statistical studies
represented in the reports you kindly sent, though our data is not in as elegant a form. We are confident that
the compiler can be run on a PDP-11 with at least 20K words of memory. We are hoping to reduce that
amount further to perhaps 16K, when time permits. Currently the interpreter is operating, but has yet to be
tried with the whole compiler on the PDP-11.

[9] We are using the modified PASCAL compiler on the B6700 as a tool for developing the new PASCAL
system, and generating pseudo-code for the PDP-11. Having started with an interpreter for the Zurich P-
Machine, we have progressed through various stages of bootstrapping to get a system compatible with the
PDP-11 objective, and the interactive system objective. Concurrent with the work using the interpreter, we
also have an advanced student programmer writing an assembler which converts the compiler P-code
output into directly executable B6700 code. The B6700 code has been executed with small programs, and
should be running the whole expanded a week or so. This compile-assemble system manages its memory
in one large array in a fashion similar to that used on conventional machines.We are using the B6700
SWAPPER for much of our batch work, and hence have been able to use DIRECT (non-overlayable) array

Reference Manual ucsd-psystem-xc 48

ucsdpsys_history(1) ucsdpsys_history(1)

space for this purpose to enhance the speed of the processing.

[9] The short-term objective for the B6700 compile-assemble system is to provide a back-up means for
students to use for PASCAL homework problem starting in late September. Our PDP-11 equipment is not
all here yet, and we clearly will not be ready to use the small machines with students during the first few
weeks of the Fall Quarter. Over the time period of the academic year about to start, we will almost
certainly have someone complete the job of making a PASCAL compiler that can generate B6700 code
directly. Yet to be resolved is the question of whether we can map the PASCAL data structures into the
array-row structure of the B6700 without doing violence to the basic approach of the P-compiler.

[9] The interpretive system is slow on the B6700, as might be expected. Themajor consumer of time is the
low lev el character processing in the INSYMBOL and NEXTCH procedures.We hav echanged these
procedures completely, so as to depend upon installation intrinsic functions (Standard Procedures) that
make use of the B6700 string processing hardware. TheGETSYM intrinsic returns information on each
successive token in an area of stack that serves as a scanner information block. This provides a clean
interface between compiler and interpreter, but it runs about half as fast as an earlier less-clean version (part
way through the bootstrapping) in which virtually all of the work of INSYMBOL was done in an ALGOL
intrinsic. Thecurrent B6700 interpretive version takes about 10 minutes of processor time to compile the
source file from Zurich.We expect the compile-assemble version, and also the PDP-11 version, to run
roughly fiv e times faster than that.

[9] During the next two months we will be up to our ears in alligators getting this system completed well
enough to use for teaching. At a later stage I would be happy to share more details with you.

PUG Newsletter 8
[10] 1977-Apr-17. UCSDhas recently started using a single user software system for microcomputers,
with all major programs written in PASCAL. Thecompiler is based on the P-2 portable compiler
distributes by the ETH group at Zurich, but it generates compressed pseudo-code for a much revised P-
machine interpreter. As currently implemented on the LSI-11, compile speed is about 700 lines per minute
(1000 on the PDP-11/10). The system includes an interactive monitor, editor, utility file handler, and
debugging package in addition to the compiler and interpreter. With 56K bytes of main memory, and dual
floppy disk drives, it has proven more convenient and faster to do all software development on the
microcomputer than to cross compile from a big machine. Whereas we have been using version of this
system that depend on I/O support from the RT11 operating system distributed by Digital Equipment Corp.,
our new system is independent of any external software support. The resident monitor, in interpreter, and
run-time support package occupy an aggregate of about 10K bytes of memory.

[10] Operation of large programs is facilitated through the concept of “Segment Procedures”, which are
rolled into memory only while actually invoked. Thecompiler (20K bytes), editor, and File handler are all
separate segment procedures. One segment procedure can call others, and segment procedure may be
declared nested within other segment procedures, to allow flexibility in memory management. The user’s
data space expands (or contracts if necessary) to take advantage of as much memory as possible after the
appropriate code segment have been loaded.

[10] Our plan is to have the new system completed to the point where it may be released to others by mid
summer, 1977, with documentation package included. During the summer, we also plan to complete a
graphics support package (including an editor for graphics oriented CAI materials), an assembler for
PDP-11 native code, and a compiler option allowing selected PASCAL procedures to generate native code
rather than P-machine pseudo code. The system is designed to make relatively painless the problem of
adding native code routines programmed in assembly language, allowing a user to augment the set of built-
in functions and procedures where efficiency is important. Thisnote has been composed and printed using
a proprietary extended version of the text editor intended for use with a CRT display, which should be ready
for release by late summer. The system should be usable on any PDP-11 system capable of bootstrap
loading from RX11-compatible floppy disk drives, or from the drives supplied with the Terak Corporation
LSI-11 based machines (see next section). Further details may be obtained, on request to the address given
in the heading, in separate notes titled “Status of UCSD PASCAL Project”, and “Preliminary Description of
UCSD PASCAL Software System”.

[10] In addition to the well advertised PDP-11/03 systems available from Digital Equipment, several

Reference Manual ucsd-psystem-xc 49

ucsdpsys_history(1) ucsdpsys_history(1)

smaller companies are offering stand-alone computers based on the LSI-11 that would be directly suitable
for our software. We hav ebeen particularly interested in using a stand-alone machine with low cost
graphic display for interactive educational applications. In connection with the EDUCOM Discount
Program (see EDUCOM Bulletin, Spring, 1977), it now appears virtually certain that the Terak Corporation
8510A will be available to member institutions for about $5300 per machine (LSI-11, 56K byte RAM,
single floppy disk, CRT for superimposed but independent text and graphics, keyboard, RS232
asynchronous interface for network or printer connection).

[10] Anyone who attended the West Coast Computer Faire in San Francisco should have come away
impressed that small stand-alone microcomputers are big business and here to stay. It is possible to re-
implement our PASCAL based software system on system based on any of the most popular
microprocessors within about 3 months of work by one programmer. At UCSD we have started to re-
implement for the Zilog Z80 OEM series of modules, which could serve as the basis for PASCAL
interpretive operation roughly as fast as the LSI-11. At the Faire, we talked with principal officers of most
of the well known microcomputer manufacturers who sell to the hobbyist market, and encountered almost
uniform enthusiasm for the idea of making PASCAL available on an industry-wide basis. On the basis of
those conversations, there is a reasonable chance that our PASCAL system will be available later this year
for use with the 8080A, 6502, and M6800 microprocessors in addition to the LSI-11 and Z80.

[10] There is widespread frustration, among those who make and sell microcomputer systems, that only
BASIC is generally available, and that no two BASIC implementations are alike. Many of those we talked
with at the Faire asked whether PASCAL could be standardized, to avoid the problem they encounter w1th
non-standard BASIC (in addition to providing a more powerful programming vehicle). Even a casual
reading of the PASCAL User Group newsletter is enough to convince one that: a) people are finding it
necessary to enhance PASCAL for their own particular applications; b) the heterogeneity of the
enhancements already reported is so great that no committee exercise is likely to produce a standard.

[10] As an alternative, we believe that a chance exists to establish1sh a defacto standard for PASCAL, at
least for small systems, by starting a bandwagon effect in the microcomputer industry. A good definition of
the underlying language for such a standard is contained in the Jensen and Wirth “PASCAL User manual
and Report”.To implement a complete interactive software system, with adequate efficiency to run on a
microcomputer, we hav efound it necessary to add built-in functions and procedures for handling text and
graphics, and an EXIT(procedure-name) built-in for clean termination of highly recursive programs. We
have implemented SETs of up to 255 members in a way that uses memory efficiently, as well as packed
arrays of BOOLEAN, for READ from a keyboard, the implied GET has to happen before the implied
transfer from the window variable associated with the file. For handling floppy disks and other small
storage media, we use the DEC standard of 512 byte blocks, and allow logical records conforming to any
structured type allowed in PASCAL. In most other respects we have been able to conform closely to the
language defined in the Jensen and Wirth book.

[10] If one common PASCAL based software system were to be come available almost simultaneously for
most of the mass distributes microcomputers that system would establish the basis of a defacto standard for
small stand-alone computers. Changes to such a system would certainly be needed with experience, but
those changes might well be made readily available to most user through “down line loading” of object
code through the dialed telephone network. Controlof the PASCAL language standard might well be
vested, at least temporarily, in a committee appointed by the PASCAL User’s Group. Fast turnaround
communications among members of such a committee could be supported by “electronic mail” techniques
over the dialed telephone network. Theverbal responses we received from the manufacturers at the
Computer Faire suggest that an unusual opportunity, that may not be repeated, exists in mid 1977 to
establish a defacto standard in the manner described here.We invite the PASCAL User’s Group to join
with us at UCSD in bringing this about this summer. In most respects, the language and system definition
design questions can be separated from implementation details.We hav esought support to allow some of
the advanced computer science students at UCSD to perform the implementation work on as many of the
microcomputers as possible. Representatives of other institutions would be welcome to work with us in La
Jola, either on’ system definition or implementation. However we will not be able, ourselves, to devote a
major percentage of out working time on definition of a standard.

Reference Manual ucsd-psystem-xc 50

ucsdpsys_history(1) ucsdpsys_history(1)

[10] Introductory Textbook. For the last two years we have used PASCAL as the basis of the large
attendance introductory course in problem solving and programming at UCSD. The course is based on a
textbook by this writer, that so far has been printed in the campus print shop. Student responses have been
unusually favorable, and the course reaches more than two-thirds of the undergraduate population even
though it is treated as elective for most majors. This response results partly from the non-numerical
approach of the book, partly from student interest in our interactive system on the PDP-11s, and partly from
our use of Keller’s Personalized System of Instruction (PSI) as the teaching method. Though suitable for
PSI, the book can also be used as the basis for a conventional course. At the invitation of Professor David
Gries, acting as computer science areas editor for Springer Verlag publishers, the book will be published in
paperback form this summer. The production schedule will be tights, and we anticipate that the first copies
will be available barely in time for the start of fall quarter classes in late September. Springer is interested
in knowing who might be interested in using the book and when. Unfortunately, alterations to make the
non-numerical approach more readily accessible on many machines will make it difficult to circulate
advance copies of the final text until late June at the earliest.We will be happy to forward inquiries to
Springer.

[10] Though very popular with the students, the non-numerical approach of the book has been difficult to
sell to most other publishers. The approach used in fact has depended upon programming examples using
English text, and requires STRING variables and supporting built-in functions that we have added to
PASCAL. Inspite of this, the students learn the same programming skills that are taught in courses using
traditional algebraic problem examples.

[10] Since the inception of our project, have wanted to orient the courses to teaching with graphic oriented
problem examples, using an approach motivated by the “Turtle Graphics” used by Seymour Papert of MIT.
The microcomputers now becoming available make it possible to teach with a graphics orientation virtually
no higher price than needed for non-graphic materials. Accordingly, the textbook will be revised to
augment and often replace the text oriented examples with graphics examples. For potential users lacking a
microcomputer with graphics display, sev eral alternate possibilities exist. Outbuilt-in functions and
procedures for graphics should be relatively easy to add to existing PASCAL compilers for other machines,
and we will supply documentation to assist in that process.A description of the built-in’s needed is
contained in the note “Status of UCSD Pascal Project” already cited. The implementation will assume a
graphic display based on the “bit-map” principle, for which many devices are available in the
microcomputer industry. Alternate display drivers will also be provided for the Tektronix 4006, 4010, ...
series of direct-view storage tube terminals. Successful, though crude, plotting of the graphic output will
also be possible on ordinary line printers. High quality graphic output is possible on matrix printers such as
those made by Printronix Gould, Varian, and Versatec.

[10] B6700 PASCAL Compiler. A PASCAL compiler which generates native code for the B7600 is now in
operation at UCSD and available for distribution from the UCSD Computer Center. The compiler is
written in PASCAL, and is based on the same variant of the P-2 portable compiler on which we have based
the microcomputer implementation. Compile speed is about 5000 lines per minute of logged processor
time. Thiscompiler has been used for teaching large classes at UCSD for th e last two months. Asfar as
we know, most of the serious bugs in the original P-2 compiler have been corrected in both the B6700 and
microcomputer implementations. The B6700 compiler provides access to most of the extensive file
handling features of the B6700. At present, no implementation documentation has been completed for the
B6700 compiler. The Computer Center will almost certainly generate such document given an indication
of interest in using this compiler by other institutions.

[10] Apology to Correspondents.I offer an apology to the many people interested in our PASCAL work
who have tried unsuccessfully to reach me by telephone or letter in the last few months. CurrentlyI must
depend upon several pooled secretaries who are not easily accessible. Having been occupied with a heavy
teaching schedule, and with a committee assignment consuming one or two full full working days per
week, the correspondence has piled up. The series of titled notes and position papers cite earlier have been
generated in self defense as a way to answer the many enquiries. Thecommittee assignment has entered a
down period. Future written requests for these papers will be answered promptly, but telephone inquiries
many remain difficult until the re-write of the book is completed.

Reference Manual ucsd-psystem-xc 51

ucsdpsys_history(1) ucsdpsys_history(1)

[10] p. 63: Zilog Z-80.Ken Bowles has announced an implementation for the Z-80 to be distributed
sometime this summer. For more details see the Digital Equipment PDP-11 section of this Newsletter.

[10] p. 63: According to Jim C. Warren, editor or Dr. Dobbs Journal of Computer Calisthenics and
Orthodontia (Oct. 1976 issue, p. 6), Neil Colvin of Technical Design Labs, Trenton, New Jersey, has
adapted a p-code compiler for the Z-80. The p-code interpreter reportedly occupies about 1K bytes.
Another Zilog rumor is that Dean Brown is the person at Zilog to see about Pascal.

PUG Newsletter 9, 10
[11] p. 112: Zilog Z-80.Ken Bowles and co-workers, UCSD, have adapted the San Diego DEC LSI-11
implementation to run on the Z110g Z-80 running (at 2.5 MHz) about 70% as fast as the LSI-11. Release
is expected by the end of 1977. See the DEC LSI-11 (San Diego) note, above.

PUG Newsletter 11 (1978-Feb)
[12] Status of UCSD PASCAL Project (27 November, 1977)

[12] This is a brief report on the current status of the UCSD PASCAL project intended to answer the
questions of the hundreds of people who have been writing to us or calling by telephone. It is our intention
ev entually to reach a steady state in which we can afford to have full time help capable of responding to
such inquiries.For the present, we have to apologize once again to those who may have been kept too long
waiting for replies.

[12] 1. Nature of the Project

[12] The project is one of the principal activities of the Institute for Information Systems (IIS). Like other
“Organized Research Units”, IIS is operated primarily to provide resources and activities within which
students and faculty can conduct research and development projects.Within the range of such activities,
projects may support instruction and other public services, though the more usual activities of an ORU
involve only basic research.

[12] Under IIS we have dev eloped a major software system for stand-alone microcomputers based on the
PASCAL language. The initial reason for developing the system was to support instruction activities at
UCSD. However, the system is designed for general purpose use, particularly for the development of
interactive software, and for software development in general. The system has matured sufficiently that we
are distributing copies to outside users at a $200 fee which pays for some of the student part-time assistants
who provide support to users and maintain the software. Underprevailing University policies, we are not
attempting to recover capital costs from the fees paid by users of our software package. However, a number
of interested industrial firms have provided assistance to further the project through unrestricted grants to
the Regents of the University of California marked for use by our project. These grants are our principal
source of operating funds at the present time.

[12] Since the PASCAL based software system was developed with the intent to support long term
instructional projects, we have placed very high emphasis on machine independence.We expect the
repertoire of instructional software developed to use the underlying system to grow very large. The
development costs for the instructional software will eventually dwarf the costs of the hardware on which it
operates. Sincethe industry is introducing new microcomputer designs at a rapid rate, we wanted to be
able to move the entire software repertoire to new machines with a minimum of effort. Aswill be detailed
in later sections of this note, our system is now running on 5 dis-similar processors, with more planned in
the relatively near future.We are using the Digital Equipment LSI-11 for teaching.Versions for the 8080
and Z80 microprocessors are operational and will be ready to distribute on or about 1 January, 1978.

[12] We intend to continue promoting the use of our PASCAL-based system on as many popular
microprocessors as practical for two reasons. First,this should provide IIS with a source of continuing
income to pay for student projects. Second, PASCAL with extensions is a superior language for system
programming, and we believe that it is in the public interest to assist in the current effort of many people
and institutions to promote wider use of PASCAL in place of some of the earlier high level languages.
Though PASCAL may have some shortcomings for specific applications, when compared to specific
proprietary languages, we regard it as by far the best general purpose language now in the public domain.

[12] Our current Research and Development interests include:

Reference Manual ucsd-psystem-xc 52

ucsdpsys_history(1) ucsdpsys_history(1)

[12] a. Methods of making large software systems like ours more readily transportable to new processor
architectures.

[12] b. The use of microcomputers as intelligent communications devices to assist humans to work
together even when located thousands of miles apart. This interest will eventually involve us in a variety of
complex software issues. In the near term it will provide us with an efficient method of supporting users of
our software system who are remote from UCSD.

[12] c. Joint use of microcomputers and Keller’s Personalized System of Instruction (PSI) as a means of
offering high quality college level mass education at lower costs per enrolled student than associated with
conventional methods.A published introductory textbook on problem solving using PASCAL, and a
library of automated quizzes and record keeping software to go with the textbook, are available to others as
a first step in this direction.

[12] d. Exploration of possibilities and software problems associated with new hardware devices or
architectures- adaptable to the purposes already described. Examples include video disks, low cost X-Y
input devices, and low cost strategies for interconnecting many semi-independent microcomputers.

[12] Partly as a matter of self preservation, we have become interested in. the problem of standards for the
PASCAL language. The United States Defense Department and many large industrial corporations have
recently decided to use PASCAL as a base language which they would extend, and possibly alter, to create
system implementation languages. Although almost every organization has chosen to extend or alter in
slightly different ways, we have found that the intent portrayed in most instances is very similar. In our
own implementation, we too found it necessary to extend PASCAL, and in very minor ways to alter the
base language as described in Niklaus Wirth’s widely read “Report” on the language (see .Jensen, K. and N.
Wirth, “PASCAL User Manual and Report”, Springer Verlag, 1975).We, and many others in the PASCAL
User Group, are very much concerned that all this extension and alteration activity will result in PASCAL
going the way of BASIC for which hundreds of dialects are in common use.We believe that a chance still
exists to gain consensus on a substantial family of PASCAL extensions for system programming, provided
that this can be brought about within the next 6 to 12 months. Unless someone does so before us, we intend
to convene a summer workshop for representatives of some of the major using organizations in the hope
that such a consensus can be reached.

[12] Another ancillary activity of the project has been continuing search for low cost microcomputer
hardware of high quality for use in educational institutions − particularly ours.We hav ebeen advising and
collaborating with EDUCOM regarding establishment of quantity purchase discounts for stand-alone
microcomputers. Thefi rst microcomputer to be included in the EDUCOM discount program is the Terak
Corporation 8510k, Which is based on the Digital Equipment LSI-11.For the current market, the Terak
unit’s price of $5500 to EDUCOM member institutions is highly competitive. Nev ertheless, the rate of new
announcements from the industry continues very high, and we believe that it is all but impossible to predict
what hardware will provide the best cost/performance tradeoff for as long as even one year in advance. Of
necessity, our search has concentrated on stand-alone microcomputers with graphic display capabilities,
and with enough main memory and secondary storage to handle the extensive software and course materials
with which we are working. We welcome inputs on this subject from other institutions, or from any vendor,
and endeavor to keep EDUCOM informed of opportunities that seem advantageous. Inaddition to
educational and communications applications, we are interested in word processing and business
applications of the same machines.

[12] The following sections of this status report contain brief detailed summaries covering most of the
topics just enumerated. If we haven’t answered your questions yet, please try again with a phone call or
letter. For those who already have our software system in use, we will soon be providing an automatic
Tele-Mail facility on a dial-in basis. This should improve dramatically our ability to keep you informed
and to respond when software difficulties arise.

[12] 2. The PASCAL based Software System

[12] Thus far, users who have received our first released system have copies of version 1.3, which was
completed in mid August this year. We hav eourselves been using version I.3c since early October. By the
end of the December academic break, we hope to have a version I.4 available for distribution. Themost

Reference Manual ucsd-psystem-xc 53

ucsdpsys_history(1) ucsdpsys_history(1)

significant generally useful addition since the 1.3 release has been the screen-oriented editor. A major
package for preparation of CAI programs, following the general philosophy of the University of California
Irvine Physics Computer Development Project (PCDP), has been placed in operation on the Terak 8510k
microcomputer. Except for some graphics materials within this package, it can be used on a wide variety of
CRT screen display devices. Software more specifically oriented to the Terak machine is also available,
and includes a character set editor (for the soft character generator), and a bookkeeping package for
keeping track of student progress in a large Keller Plan (PSI) class.

[12] The software system is currently executed in a pseudo machine interpreter, which emulates a
hypothetical real machine designed to handle PASCAL constructs efficiently. Our pseudo machine is
similar in concept to the P-machine distributed by Wirth’s group at Zurich, but we have made extensive
changes to compress the PASCAL object code into a much smaller space than possible with the Zurich
interpreter. The interpreter, and run-time support routines, currently occupy about BK bytes of main
memory. The interpreter is in the native machine language of the host machine, and thus far has been
coded by hand using the host’s assembly language. All other code in the system is written in extended
PASCAL.

[12] While the interpreted object code runs roughly fiv e times slower than native code for the host machine,
several factors allow our large system programs to run substantially faster than this would indicate. The
strategy of code compression makes it possible to run relatively large programs without time consuming
overlays. For example, the complete compiler occupies 20K bytes in a single overlay. Since the system is
designed for frequent compile/go cycles associated with instruction, we have added several built-in
procedures and functions to handle low lev el Operations needed frequently by the compiler. As a result, the
compiler translates PASCAL source code at about 650 lines per minute on an LSI-11 with its clock set to
2.2 MHz. On a Lt MHz Z80, the compile speed will be slightly faster than this.

[12] Interpreter based versions of our system are flow running on 5 distinct processors, and two others are
close to completion. Those operating include DEC POP-11’s ranging from the LSI-11 to the 11/45, using
either floppy disks or RKO5 disks for secondary storage.Versions for the 8080 and Z80 are operating in
our laboratory, but more of that later. Sperry Univac Minicomputer Operations at Irvine is using the system
on the V-75 and related machines. Another group at UCSD has the system running on the Nanodata QM-1.
With support from General Automation, a version is close to completed on the GAZLO family of
machines. NationalSemiconductor has an implementation nearly completed on the PACE microcomputer.

[12] The principal modules of the system as it will be distributed in the 1.14 release include the following:

PASCAL compiler File manager (capabilities similar to DEC’s PIP) Screen oriented editor (cursor
positioning, immediate updates) Line oriented editor (similar to DEC’s RT-11 Editor) Debugger (single line
execution, reference to variable contents) SETUP program (adapt system. to most ASCII terminals) BASIC
compiler (ANSI standard plus strings) Operating System and user command interpreter PASCAL pseudo
machine interpreter Linker program (for linking independently compiled program segments) Desk
Calculator utility program

[12] Users of the Terak 8510A may, on request, also receive copies of the CAI package, and automated
quizzes for the introductory textbook, as well as the bookkeeping package.

[12] Documents describing all of the above are available, and part of the release, but not all documents can
be considered complete at this time.We distribute source and object code files on separate floppy disks
formatted to be compatible with the IBM 37140 standard, with 512 byte blocks laid out in alternate 128
byte sectors according to DEC’s standard. We hav eoccasionally sent copies recorded directly on disk
packs for the RKO5 drives. All other media are painful or impossible for us to handle, and no promises are
made to use them. Those who order the full $200 release package will be sent both the documents, and
printed listings of the source programs. Copies of the descriptive documents, amounting to approximately
150 pages, may be ordered at $10 each (checks payable to the “Regents of the University of California”) to
cover printing and handling costs.

[12] 3. Minimum Configuration

[12] In order to use the compiler, you need a total of at least 148K bytes of main memory, including the 8K
bytes assigned to the interpreter. We use 56K bytes. Ideally, the interpreter should be completed re-entrant

Reference Manual ucsd-psystem-xc 54

ucsdpsys_history(1) ucsdpsys_history(1)

and thus it should be possible to operate the interpreter from Read Only Memory. To date, the ideal has not
quite been achieved, as none of our sponsors has yet insisted on that feature.

[12] At present, the system we use with students contains several built-in functions not needed for system
development. Theaggregate size of these functions is large enough to prevent compiling the compiler
itself, or the operating system, even on a 56K byte system. Accordingly, we currently have two versions of
the system, one for students, and one for system development. Within the next few months, we plan to add
a means of configuring general purpose libraries for the system, and by that means expect to be able to
return to a single version for all purposes. That single version should be practical to use in less than 18K
bytes for some purposes.

[12] If you intend to compile on one microcomputer, and to executed object routines on others, the others
can get by with as little as 1&K bytes of main memory if the operating system is not used. The resident
portion of the operating system occupies about 8K bytes itself. This will undoubtedly be reduced as part of
the libraries project.

[12] The system is designed to be used with standard IBM compatible floppy disks, Clearly it can be used
with other varieties of floppy disks, or with other secondary storage media, with appropriate I/O drivers.
The I/O drivers have proven to be one of our principal bottlenecks, and we make no promises in advance
about supporting other devices. For DEC PDP-11 machines, the floppy disk drivers are assumed to be
compatible with the RX-11, or with the Terak 8510A drives. Harddisks are assumed to be compatible with
the RKO5.

[12] The system is normally supplied with the assumption that the user has a simple line-oriented ASCII
terminal. TheSETUP program can be used to configure control codes for more appropriate use of most
CRT terminals. Copiesof ’ the system supplied to users of the Terak 8510A make fairly extensive use of
the special graphics and character generator facilities of that. machine.

[12] 4. 8080 and Z80 versions

[12] The Z80 version is now running on the Tektronix 8002 Microprocessor Development Aid system, for
which Tektronix has supplied substantial support to the project. The 8080 version uses virtually the same
source code as is used on the Z80, with conditional assembly altering certain passages in the source to
substitute for a few of the extended Z80 instructions that proved useful.

[12] Release of the 8080/Z80 version of the system for other machines has been held up primarily because
of the awkwardness of handling I/O.We currently have a Zilog Development System, a Processor
Technology SOL system, and a Computer Power and Light COMPAL-8O system. The floppy disk
provisions for each of these machines is non-standard. As a result, we have been forced to down-load
programs via serial interfaces to get from the LSI-11 host machines used for development over to the new
8080 or Z80 based host, This has proven to be a very time consuming process, and a serious bottleneck in
our work. Moreover, we are somewhat amazed to find that the Assembly of large programs on these
machines runs almost a factor of ten slower than compilation of PASCAL programs that carry out similar
tasks. Clearly, something has to give if we are to reach the objective of distributing PASCAL systems for
more than a few 8080 and Z80 based machines.

[12] The solution to this problem that we now plan to use is based on the extensive market penetration of an
operating system called CP/M, which is a product of Digital Research Inc.We hav etalked with many
OEM and hobbyist users of the 8080 and Z80 who wanted to know when we would have the PASCAL
system operating under CP/M.We then learned that CP/M is distributed in a package which assumes that
most users will write their own I/O drivers. Ineffect, CP/M establishes a quasi standard for the interface
between an 8080/Z80 operating system and its I/O drivers. With thousands of copies working in the field,
CP/M seems to be far ahead of’ the field in this area. Accordingly, we hav edecided to release the UCSD
PASCAL System for 8080 and Z80 users in a form that will work with I/O drivers and bootstrap loaders
developed for use with CP/M. This does not mean that our package will run under CP/F4. However, if
CP/M runs on your machine it should be relatively easy to install the PASCAL system on that machine.We
have been in contact with Digital Research on this concept, and they hav eoffered to cooperate. If you do
not have CP/M for your machine, the implementation package may be obtained from Digital Research Inc.,
Box 579, Pacific Grove, CA 93950 for $70. Since CP/M has been implemented on a very wide variety of

Reference Manual ucsd-psystem-xc 55

ucsdpsys_history(1) ucsdpsys_history(1)

8080 and 280 based machines, there is a high probability that CF/N I/O drivers are already available from
Digital Research or someone else for your machine.

[12] Alteration of our present interpreter to match the CP/M I/O calling conventions has proven to be very
simple, at least on paper. We expect that some implementors of CP/M will have installed standard console
input routines which automatically echo to the standard console printer or display device. Thiswill
necessitate a change, since our system uses both echoing and non-echoing console input. At this writing,
the exact method to be used is under discussion. Barring some unforeseen calamity, copies of our system
designed to run with CP/M I/O drivers should be ready for distribution by early January, 1978. The
distribution medium will be IBM compatible floppy disks formatted in a manner yet to be finally specified.
We will undertake to transform the system for other media and other formats, in general, only if a copy of
the necessary hardware is available in our laboratory, and only if funds are available to pay for the extra
conversion work.

[12] For many of the 8080 based machines we have seen, the most practical way to install our system will
be to use 18K bytes of RAM augmented with BK bytes of ROM for the interpreter. Any additional RAM
or RON required by the host processor system will also be needed.

[12] 5. PASCAL Extensions and Alterations

[12] We hav eattempted to implement faithfully as much as possible of PASCAL as defined in Jensen &
Wirth’s User Manual and Report. The principal extensions to PASCAL embodied in our system are related
to STRING variables, Turtle Graphics, handling of disk files, Segment (overlay) Procedures, and several
functions for support of the system itself. Alterations include a prohibition against passing procedure or
function identifiers as parameters, restriction against GOTO out of a procedure, the addition of
EXIT(<procedure-name>) to effect a normal exit from the procedure named in the parameter, and a change
in READ applying to the interactive INPUT and KEYBOARD files. Furtherdetails than given in this
section are given in our system release documents.

[12] Type STRING is a pre-declared record containing a character count followed by a packed array of
characters. Built-inprocedures and functions include LENGTH, POS(ition), INSERT, DELETE, COPY
(i.e. extract), CONCATenate, SCAN, FILLCHAR, MOVERIGHT, and MOVELEFT. The last four of
these also operate on conventional packed arrays of characters.

[12] Turtle Graphics describes a technique originated by Seymour Papert of MIT in which one can either
MOVE a cursor (called the “turtle”) an arbitrary number of screen units in the current pointing direction, or
TURN an arbitrary number of degrees at the current position.A PENCOLOR procedure allows the line
drawn by a MOVE to be either WHITE, BLACK, or NONE.

[12] The disk file extensions allow working with fixed length logical records corresponding to any leg al
<type>, which might typically be a RECORD data structure. GET and PUT operate normally through a
window variable of the same <type>. OPENNEW creates a new file, OPENOLD opens a pre-existing file,
and CLOSE allows saving or purging a file. SEEK(which will be distributed with the 1.11 system for the
fi rst time) allows random access to logical records within a file. SEGMENTProcedures are separately
compiled and then linked into the host program using the LINKER.A Segment procedure is only loaded
into main memory when it is entered for the first time, and its memory space is deallocated upon exit from
the first invocation.

[12] READ(INPUT,X) is defined by Wirth as X: INPUT f; GET(INPUT); which we find to be extremely
awkward for interactive use. Oursolution is to place the implied GET before the implied assignment in the
case of interactive files of type TEXT. READ operates as defined in Wirth’s Report for other TEXT files.

[12] PACKED records on our system which fit within 16 bit fields are automatically packed and unpacked
without explicit action by the programmer.

[12] 6. Introductory PASCAL Course and Textbook

Many of those inquiring about our system have heard about it through having seen the textbook
“Microcomputer Problem Solving Using PASCAL” by the author of this note, published this fall by
Springer Verlag. Ifyou haven’t seen a copy, they may be obtained from Springer at 175 Fifth Ave., New
York City, NY 10010.

Reference Manual ucsd-psystem-xc 56

ucsdpsys_history(1) ucsdpsys_history(1)

[12] The book is the basis for teaching the large attendance introductory computer science course at UCSD.
This course comes close to matching the specifications for course CSI in the recently published curriculum
recommendations from ACM’s SIGCSE. Theapproach is non-numerical as far as practical, as a tactic to
reach the many students who come to us with inadequate preparation in high school mathematics. The
problem solving and programming approach taught is the same as we would teach even if all the problem
sets were mathematics oriented. Because many problem examples and illustrations use our string and
graphics extensions to PASCAL, the textbook currently assumes that the student will have access to a
computer which runs under the UCSD PASCAL system.We will be glad to discuss the possibility of
conversion to other software systems, but have very limited resources to apply to such conversions. There
are several stand-alone microcomputers now being sold in large quantities on which our system would run,
given a small conversion effort, and we would welcome support funds to pay for such conversions.

[12] Software in the form of automated quizzes is available with our system release for those who may
wish to teach using the textbook. Eachchapter in the book has a list of study goals for the students to
achieve. Wherever appropriate, the quizzes test for mastery of the topics enumerated in the goals lists. The
quiz programs have been implemented using a set of CAI primitive routines patterned after the well known
DIALOG CAI system developed at U.C.Irvine by Alfred Bork and his colleagues.

[12] The introductory course is taught using Keller’s Personalized System of Instruction (PSI). PSI has
been found to be a more successful method of instruction than any other method commonly used in
universities and colleges. Thissuccess is achieved, almost completely without conventional lectures, by
using experienced students as Learning Assistants called “proctors”. The characteristics of this method
make us believe that it is possible to offer this course, or others constructed along the same lines, on a
packaged basis for use at other institutions.A separate paper describing this possibility in detail called
“Microcomputer Based Mass Education” is available from the writer of this status report.

[12] 7. Tele-Mail User Support Facility

[12] We hav ereached the point where it will be possible for us to begin operating a dial-in computer
“mailbox” by early in the winter quarter. We hav ebeen using the Terak 8510A machines occasionally as
intelligent terminals for exchanging messages via the large B6700 computer operated by the campus
computer center. Our own Tele-Mail facility will use its own single telephone number reachable directly
from the national dialed telephone network, or internally via the California state government telephone
network. Paid subscribers to our software release will be notified when this mailbox facility is ready to be
used.

[12] The mailbox will be operated primarily to serve users of our software system. It will provide notices
of recent bug corrections, down-loading of program files (either source or object) where appropriate,
notices on new additions to the software and new machines on which implementations have been
completed, and other useful information from us to the users. It will also serve as a means for us to collect
messages from specific users, and to answer them expeditiously, without the hassle of both parties having
to be at their telephones at the same time.

[12] Through the use of block transfer software, the mailbox will make relatively efficient use of the dialed
telephone network. We would like to begin immediately by offering a dial-in port at 1200 bits per second.
However, the present state of confusion in the industry at that speed (which is the fastest one can use with
acoustic couplers) leads us to move cautiously. We can and will install a port at 300 bits per second using
the standard Hell 103A equivalent conventions. Thesystem will answer an incoming call from an ordinary
terminal by providing a brief summary of recent developments. Itwill otherwise expect a “handshake”
from a special file transfer program that we will provide to users of our software package. This program
will be the means of interchange based on efficient transfer of messages in the form of complete files. If
you wish to send an ordinary text message to us, you will prepare the message using either of the editors
built into the system. Only after the message is complete will you need to make the telephone connection.

[12] 8. Forthcoming Improvements

[12] As mentioned earlier, our next significant improvement in the software will be a more flexible system
allowing libraries of programs. One of the main reasons for doing this will be to allow the software to be
configured to make eff i cient use of main memory in cases where the user does not need all of the built-in

Reference Manual ucsd-psystem-xc 57

ucsdpsys_history(1) ucsdpsys_history(1)

facilities. For example, we have no need for turtle graphics when compiling large system programs.

[12] One of the long awaited features of the new library system will be an arrangement allowing mixture of
PASCAL procedures with Assembly language routines and/or procedures compiled directly to the native
code of the host machine. The necessary assemblers and code generation will come somewhat after the
library system is operational. If all goes well, the library system should be ready to distribute during the
winter quarter of 1978. The assemblers and native code versions of the compiler will come somewhat later
as time for the necessary work permits.

[12] Many people have asked whether we have in mind extensions to support Concurrent PASCAL, or
similar facilities to allow independent processes running concurrently. This is something we would like to
do eventually, but our current resources do not allow making definite plans in this area.

Pre-I.2
[1] What was to become UCSD Pascal began in October 1974, by Kenneth Bowles and Mark Overgaard.

[2] While Roger Sumner was a junior at UCSD’s Rev elle College, 1974, Dr Bowles asked him to
participate in the Project’s system software design and development. Portingof Urs Amman Pascal
compiler to the UCSD Pascal environment, and the design and implementation the PDP-11/LSI-11 P-Code
interpreter.

[1] Niklaus Wirth’sPascal User Manual and reportwas quickly adopted at more than 300 Computer
Science departments . Urs-Ammann’s P-machine allowed (almost) instant Pascal on diverse machines.
Pascal was a big influence on adding Science to Computer Science.

[1] The p-Machine has similarity to B6500 stack machine hardware. Usedassembly language to
implement P-machine on the PDP-11. Compiled Pascal on B6500 to write primitive UCSD Operating
System, and to port Ammann’s compiler. Ammann’s Pascal Compiler re-compiled for UCSD p-Machine.
Students developed the Editor, the Filer, etc, on the PDP-11 using Pascal

Which students? When? Name names. Datedates.

[1] Bowles persuaded Terak to build cheaper LSI-11 small computer. The Terak UCSD design widely
adopted at other universities. (when?)

[1] The first port of the UCSD p-System was to the Z80, and it was a revelation. PeterLawrence and Joel
McCormack worked on the first trial demo in early 1976. First step... showed Sumner’s Op System
seemingly worked. Pluggedin floppy disk with Kaufmann’s Editor, All Pascal software worked on Z80 as
on PDP-11, with no change. Portable software.

[1] Software was sold with a $15 license fee, to support project infrastructure.

[1] There was a need to extend the Pascal language definition to accommodate some features of small
machines. Thiswas not met with universal approval.

I.2 (date?)
[7] released in-house at UCSD. Not yet self-hosting?

I.3 (Aug-1977)
[7] released at UCSD, also released to a few other UC campuses. All parts of the system still contained in
SYSTEM.PASCAL.

The first “working” version of the interpreter, for reasonably loose definitions of the term “working”, was
I.3a. Thiswas the p-machine that was used on the PDP-11/10s in the lab. [Keith Shillington, Pers.
Comm., 2010-May-31]

I.4 (Jan-1978)
[7] general release. System divided into separate filer, editor, compiler.

I.5 (Sep-1978)
[7] UNITs developed, compiler now able to compile them. Editor now able to copy from other files. Filer
how has wild-carding. Many other features.

I.5 has sub-versions a through f (several debugging efforts).

Reference Manual ucsd-psystem-xc 58

ucsdpsys_history(1) ucsdpsys_history(1)

II.0 (Jan-1979)
[7] Second p-machine version. Division of single Remote I/O channel into separate input and output
channels. Notmuch difference in organization from I.5

Swansong (1979-Jul-09)
[14] Events have once again overtaken us resulting from continued rapid growth in interest throughout the
industry in UCSD Pascal***. Onceagain we have to apologize for the long delay since our last newsletter.
This time, the growth has forced major changes in the nature of the Project. As a result, this newsletter will
probably be the last one distributed from UCSD to our full mailing list.

[14] Commercial Licensing of UCSD Pascal™

[14] Readers familiar with the recent progress of our Project will recall that our top priority objective is to
promote the concept of machine independent software. To move a large and complex applications program
from one machine to another, we hav efound it vastly more practical to move the entire software system, i.e.
UCSD Pascal ™ than to re-compile the applications program using just the compiler for the same high
level language on each machine. The reason for this is that practical use of a programming language, no
matter how well standardized, demands uses of operating system facilities. Thesefacilities often must be
reached using language constructions that fall outside the language standard specifications. Our
experiences in this area have been so successful that we have felt obligated to pursue a course whereby the
same UCSD Pascal System can be made widely available on machines of many different designs.

[14] NOTE: “UCSD Pascal” is a trademark of the Regents of the University of California. Use thereof in
conjunction with any goods or services is authorized by specific license only, and any unauthorized use
thereof is contrary to the laws of the State of California.

[14] As a secondary objective, we are, of course, helping to promote the wider use of Pascal. Again, the
objective of program portability demands language standardization. During the last year tremendous
progress has been made toward international standardization of Pascal. Thework is being led by a
committee of the British Standards Institute, who have issued a draft for a new standard definition of
Pascal. Thisdraft describes virtually the same Pascal as described in the original Report issued by Niklaus
Wirth. Thenew draft clears up a large number of ambiguities and inconsistencies, in Wirth’s definition,
making the language definition easier to understand. In the United States, a joint committee of ANSI and
IEEE is actively participating in this effort. In view of the widespread use of UCSD Pascal™ we have felt
obliged to support a version of Pascal which agrees with the standard language as closely as practical. In
common with most other implementations of Pascal, we have made a few carefully chosen extensions to
the standard language. Our “base” language does differ slightly from the new draft standard, and efforts are
under way to correct these differences. We are disappointed that it seems very unlikely, in view of the real
world politics of standardization, that a widely used standard will soon emerge on extensions to Pascal
which are needed for some common applications.

[14] Beginning about a year ago, these objectives led us to arrange for commercial licensing of the UCSD
Pascal System under circumstances that would discourage advertising as “UCSD Pascal” any version of the
software not functionally identical to versions issued by the Project. This required a close working
relationship with many manufacturers, to assure correct installation of the System on their equipment. A
substantial aggregate level of income to the Project was required to pay the student employees engaged in
the installation of the System on various different equipment models. By the end of the Fall quarter we
were beginning to learn how to conduct this activity reasonably efficiently.

[14] Because of legal constraints on University of California activities, the University administration
directed that the Project either cease operations or find an outside licensee to handle the routine
maintenance, user support, sub-licensing, and installation of the System on additional machines (as well as
on all those already licensed). It soon became apparent that other legal l imitations would make it
impractical to use a not-for-profit outside licensee.For other reasons, well established practices of the
University of California (as well as many other universities) indicated the use of just a single outside profit
making firm as the University’s “Sole Licensee” for support services covering UCSD Pascal™. Had
several firms been licensed to handle sub-licensing, under a competitive arrangement, other laws would
have made it impossible for the University to compel the several firms to release and maintain the same
version of the UCSD Pascal System.With the sole licensee, the program portability objective is optimized

Reference Manual ucsd-psystem-xc 59

ucsdpsys_history(1) ucsdpsys_history(1)

because the the licensee will distribute a common version of the system for all implementations.

[14] In the choice of a sole licensee, many other considerations were taken into account.We felt it
necessary to choose a well established software house whose business history indicated a respect and
understanding for the systematic programming principles on which Pascal is founded. The firm had to be
large enough, and financially strong enough, that the University could reasonably assure the user
community that commercial quality support services would be available indefinitely to back commercial
distributors of UCSD Pascal™. Without this assurance, many of the commercial distributors were already
showing signs of creating their own software support staffs − with the inevitable result that the many
distributed versions would soon differ from the University’s version. (Whilewe know there are many
shortcomings in the design and implementation of UCSD Pascal™, inter-machine portability of large
application programs demands that all versions be the same in spite of those shortcomings.) The firm
chosen also had to be small enough to minimize the layers of bureaucracy in University communications
needed to oversee the work of the sole licensee.To foster continued close working relationships with the
surviving research and education components of the Project within the University, preference was given to
fi rms willing to locate the principal support office for UCSD Pascal™ in the close vicinity of the UCSD
campus.

[14] Within these constraints, one of our major concerns was to find a firm willing to pursue the support
and sub-licensing of UCSD in a way that would lead to widespread availability of portions of the System to
students in colleges and schools at the lowest possible prices. It must be emphasized that this objective
cannot be achieved by releasing all details of the current UCSD Pascal System into the public domain. If
there were no copyright protection and commercial publication of college textbooks, and texts were
required instead to be released to the public domain, there would be no system of mass education at the
college level. Similarly, widespread availability of UCSD Pascal to college students demands a distribution
approach that in some cases will resemble textbook publishing. Moreover, the UCSD Pascal System will
not survive as an important tool for education unless it is also used extensively for commercial computer
applications in many different ways. Asubstantial staff is needed for support and maintenance work
necessary to assure that the quality of the UCSD Pascal System will improve, or at least not decline, as it
ev olves. Thesole licensee firm must therefore be able to pay that staff and make a reasonable profit.

[14] As a result, the best we could do (for students and individual users) was to seek a sole licensee willing
to work with companies interested in “publishing” smallish configurations of the UCSD Pascal™ System
in large quantities at modest prices. Because of legal constraints, the University is unable to specify the
pricing policies of the Sole Licensee.We sought a sole licensee willing to price its services within the
range of the many small companies who wish to distribute UCSD Pascal™. Beyond this, the sole
licensee’s pricing will depend upon feedback from the marketplace. We feel that the interests of the small
companies coincide with the University’s objective of promoting program portability via machine
independent software. Experiencewith the larger companies, who have so far indicated an interest in
distributing UCSD Pascal™ has been that they usually seek licensing arrangements giving them complete
freedom to modify as they wish. Therefore,it appears that the interests of the small distributor firms, and
of individual users in general, will be favored if the sole licensee can base a strong and growing business on
licensing arrangements which reinforce the machine independence concept. The sole licensee can only do
this by earning a reasonable margin of profits from work with all sub-licensees, both small and large.

[14] Given the large community now interested in UCSD Pascal™, a brief comment on your opinions
seems indicated.We understand that not all users of UCSD Pascal™, whether individuals or organizations,
are enthusiastic about the changes described in this section.We hope that readers will understand that we
too are frustrated about some aspects of the new licensing arrangements. The greatest frustration, by far,
results from having to satisfy the dozens of laws and regulations that apply at the federal and State of
California levels. Thenew licensing and support arrangements are the result of more than six months of
negotiation, and examination of almost every aspect of the Project and its distribution of UCSD Pascal™.
The new arrangements have been negotiated with extensive participation of the University’s central
administration and legal departments. Thestatus of public access to the software products of the Project,
and the stated objectives for the new licensing arrangements, are the best. we have been able to achieve in
making UCSD Pascal™ a community wide resource, within all the imposed constraints.We appeal to
readers to accept the new arrangements, and to assist us in taking advantage of the machine independent

Reference Manual ucsd-psystem-xc 60

ucsdpsys_history(1) ucsdpsys_history(1)

aspects of the UCSD Pascal™ System, and its role in helping to make the Pascal language more widely
used.

[14] SofTech Microsystems Inc.

[14] The sole licensee chosen by the University is SofTech Microsystems Inc. (abbreviated as “SMI” in
parts of this newsletter). SMIis a newly formed subsidiary of SofTech Inc, of Waltham, Massachusetts.
The principal business of SMI will be to provide support, maintenance, sub-licensing, and other services
related to the UCSD Pascal™ System. They may be reached at:

Until 1 September, 1979

SofTech Microsystems, Inc.
P.O. Box 28010
San Diego, California 92128

Tel: (714)741-1353 (temporary)

After 1 September, 1979:

SofTech Microsystems, Inc.
9994 Black Mountain Rd., Bldg 3
San Diego, California 92126

Telephone pending

[14] Not the least of the reasons for selection of SofTech as the sole licensee was their extensive expertise
in managing complex software projects. As the Project began to support versions of the UCSD Pascal™
System adapted for many different processors and machines, it became apparent that the control of all those
versions to operate identically was getting out of hand. SofTech has a major “Software Engineering
Facility” for microcomputers, called the “MSEF”, which will be used starting immediately to help bring
some order out of the chaos that has developed from the (necessarily) casual management environment of a
university project mainly staffed by students. In addition, SofTech’s management agrees with our
commitment to make the Pascal base language supported by the UCSD Pascal™ compiler conform as
closely as possible to the new (draft) international standard for Pascal. TheMSEF and SofTech experience
will help considerably to complete this task expeditiously.

[14] As this newsletter was being prepared, most of the initial staff of SMI was just beginning to work for
the firm. Roughlyhalf of the initial staff consists of people who, until recently, hav eworked for the Project
as student employees of the University. Among the principals of the Project, Mark Overgaard has joined
SMI as a full time employee. Thiswriter, as director of the Project, remains as a full time employee of the
University with no financial interest in SMI, and with no employment status with them. All parties
concerned would have preferred that both Mark and this writer could have taken split appointments, partly
at SMI and partly at the University, in order to maintain the closest possible working ties between the
Project and SMI. This has proven unworkable because of the California Conflict of Interest Code for
employees of public institutions. Nevertheless, every possible effort is being made to ensure that the close
working relationship between the UCSD Project and SMI will continue.

[14] Tr ansition to Support of UCSD Pascal™ by SofTech Microsystems

[14] After a brief transition period, SMI will henceforth be responsible for all (sub)licensing for distribution
of the UCSD Pascal™ System, or any of its components, to end users. The Project (i.e. UCSD) will
distribute copies of portions of the System under the present catalog arrangement until the close of business
on 14 August, 1979. Orders not requiring special handling will be processed by UCSD in the order they
arrive. Any orders not yet processed by the available staff on the 114th of August will be turned over to
SofTech Microsystems for whatever follow-up they consider most appropriate. Users concerned with this
switch should understand that the nucleus of Project employees who have run the support group will
become employees of SMI on 15 August. Thereafter, the Project will not be able to accept incoming
orders, and there will be no support staff who might process such orders. Some orders for the I.5 version of
the System were accepted by the University before the current catalog based distribution mechanism went
into effect in January this year. Obviously, the hold-over offer of $100 credit against future catalog orders
(presented to those who ordered I.5 before the catalog system went into effect) will have to expire on 14
August. We apologize about the short notice, but circumstances have made it impossible to do any better.

[14] All existing individual licenses for use of the UCSD Pascal™ System contain a clause stating that the
license holder will have unlimited rights to the licensed materials after two years, unless the University
terminates the license before that time. As a result of the negotiations described in the previous section, the
University is now obligated to terminate all of the existing individual licenses.We hasten to assure

Reference Manual ucsd-psystem-xc 61

ucsdpsys_history(1) ucsdpsys_history(1)

licensees that they will be offered a replacement for the licenses, with rights similar to those provided in the
original licenses, but lacking the reversion to unlimited use after two years.

[14] All sub-licensing of distributors of portions of the UCSD Pascal™ System was transferred to SMI as
of early June, 1979. It is expected that amicable arrangements will soon be made with virtually all firms
who currently are licensed by the University for distribution of UCSD Pascal™, such that replacement
licenses will be negotiated with SMI.

[14] In preparation for the new licensing arrangement, the term “UCSD Pascal” has been made a legal
trademark of the University of California. The sole license agreement requires SMI to certify that sub-
licensees, who use the term “UCSD Pascal” in advertising or describing the software they distribute, do so
only when the distributed software meets specified functional tests. The tests are designed to assure that all
software identified as originating from the UCSD Pascal Project will function in the same way, thus
enhancing the portability of application programs.For purposes of the transition to sub-licensing solely by
SMI, distributors currently licensed by the University will be regarded as having passed the certification
tests, but only for the version(s) of the System already licensed.

[14] At this writing, SMI is busy preparing an announcement of services to be offered, and pricing for those
services as well as sub-licenses. Since many of SMI’ s employees have been hired at the going high salary
rates for system programmers, readers should not be surprised to find that SMI’s prices will generally be
higher than those previously offered by UCSD. In effect, these higher prices are an unavoidable necessity
if good quality support services are to be available for the System on a continuing basis.

[14] The Great Version Number Fiasco

[14] If you order UCSD Pascal™ from a commercial distributor you may find that it is Version I.4, I.5, II.0,
II.1, or III.0. Someearlyversions arebased onbut not identical to Versions I.3 or I.4.We hav eheard of
vendors selling Version III.0 as better than II.1, and vice versa, whereas there is some truth in both claims!
Herewith a brief recounting of how this mess arose, and how it will probably be cleaned up.

[14] Version I.5 was first released from UCSD in the fall of 1978. It differed from I.4 mainly by adding the
facility to compile and use independent collections of routines called “Units”. This facility makes it
possible to provide a large library of service programs written in Pascal (or Pascal mixed with Assembly
Language), and to use them without re-compilation.

[14] During the summer and fall of 1978, the P-machine interpreter for UCSD Pascal™ was implemented
to run on several additional processors, notably the 6502, 6800, 9900, and GA-16. It was hoped that the
interpreter for these processors could incorporate design changes to make the P-machine generally
compatible with a wider class of processor architectures. During the same period, the Project agreed to
work with Western Digital on the development of the microprocessor W/D is now selling as the “Pascal
MicroEngine”. Thismicroprocessor is programmed entirely in Pascal, with no machine level or assembly
language being supported. This made it necessary to augment UCSD Pascal™ with provisions for
concurrent processes, so that interrupt routines could be written. At the same time that the P-machine
interpreter was being revised for this purpose, changes were also made to make the P-machine more
compatible with the extended address ranges of the new generation of 16-bit microprocessors. Because the
implementation work for the 6502, 6800, 9900, and GA-16 overlapped with the revision work on the P-
machine interpreter,someof the revised P-machine features found their way into the interpreters for those
processors. Initially, it had been hoped that the first distributed versions for these processors could take
advantage of the full set of P-machine improvements. Bythe end of 1978, it became clear that this was not
feasible, since the system software to support all of’ the new P-machine features would not be completed
for several more months.To reduce the chaos, we decided to establish as the single (interim) P-machine,
for all processors other than the MicroEngine, the version already implemented on the 6502, 6800, 9900,
and GA-16.

[14] The interim interpreter was designated as II.0. It was first released during February, 1979. Software
for II.0 was virtually the same as Version I.5 except for corrections of reported bugs in I.5.

[14] Version II.1 has evolved from II.0 as a way to make the System easier to use on machines with mini-
floppy disk drives. ThoughI.5 and II.0 provide much greater flexibility than Version I.4, because of the
new Units facility, the linker required to work with Units imposes a heavy overhead burden (processing

Reference Manual ucsd-psystem-xc 62

ucsdpsys_history(1) ucsdpsys_history(1)

time, space in memory, space on the disk).Version II.1 adds “Intrinsic” Units to the facilities of II.0. An
Intrinsic Unit may be used without resort to the linker. This eliminates the need to retain a copy of the
linker on one’s principal working disk, and eliminates the substantial time delay associated with the linking
process after every compile. (It is still necessary to use the linker to incorporate assembly language
routines into a Pascal program Unit in the form of EXTERNAL procedures.) At this writing, II.1 has been
released for the Apple II computer, and is being distributed by Apple Computer Inc. (not by the Project!).
Work is well under way to convert all other implementations supported by the Project, apart from the W/D
MicroEngine, to II.1 within the next several months. This conversion has been delayed somewhat by the
shift of licensing and support to SofTech Microsystems.

[14] Version III.0 is the initial version developed with enhancements for concurrent processing. It is the
fi rst version to be available on the Western Digital MicroEngine, which is now being delivered to
customers. ThePascal language facilities of III.0 are largely those of the I.4 version of the System, and
thus III.0 still lacks the Units facility of I.5, II.0 and II.1.Work is under way to augment the III.0 version to
include all of the facilities of I.5, II.0 and II.1.

[14] SofTech Microsystems will now be responsible for releasing a single new version of the System which
will provide the beneficial features of all previous versions. Thisnew version, tentatively called Version IV,
will probably not be available until 1980. It is not yet clear whether an interim Version III.1 will be issued
for the W/D MicroEngine, to bring the System on that machine closer to the others before Version IV is
completed.

[14] We emphasize that nothing in this summary constitutes a promise of delivery of any new version of the
System. SofTech Microsystems intends to issue a description of their plans by 1 September, 1979.

[14] User Group

[14] There have been frequent suggestions or requests that a UCSD Pascal™ user’s group be established.
We hav ebeen very sympathetic to this concept, but have felt it inappropriate for us to organize such a group
ourselves. Moreover, it has not been possible to allocate University resources to support such a user’s
group.

[14] Now SofTech Microsystems has indicated a willingness to encourage the creation of a user’s group,
and to supply some resources and assistance to that end. Readers interested in assisting with the formation
of a user’s group should write to SMI (not UCSD!).

[14] Update on Processors and Implementations

[14] As of this writing, implementations of current machine independent versions of the UCSD Pascal
System have been licensed for distribution on the following processors:

6502
6800, 6809

* 8080, 8085, Z80
9900

* General Automation GA-15
* PDP-11, LSI-11

Western Digital MicroEngine

[14] Note that the Project distributes copies to individuals only for the processors noted with “*”. SofTech
Microsystems will announce its own plans on individual distribution for any of the processors in this list.
(Remember that their distribution starts on 15 August, 1979).

[14] Licensed versions, though not fully compatible with those supported by the Project, are available for
the following:

Alpha-Micro 100
Data General NOVA
Nanodata QM-1

[14] An experimental version has been implemented on the Hewlett Packard 9835 desktop computer, and
another on the Lockheed Sue. Several bit-slice microprogrammed implementations have also been
reported.

Reference Manual ucsd-psystem-xc 63

ucsdpsys_history(1) ucsdpsys_history(1)

[14] The Project has a version nearing completion for the 8086 processor. This activity is currently delayed
for the lack of hardware on which to complete testing.

[14] Intensive Training for UCSD pascal™

[14] Many people who communicate with us have asked when/whether a course would be made available
on Pascal, and on the UCSD Pascal™ System, for people who already can develop programs in other
languages. Incooperation with Integrated Computer Systems, Inc. (the “Learning Tree” people), an
intensive 14-day short course is now being developed for first offering in October this year. About half of
the available time will be used for guided “hands-on” use of the UCSD Pascal™ System on small
microcomputers − probably Apple II’s. TheICS mass mailed announcement on this course should be
arriving within the next few weeks. Ifyou don’t already receive regular mailings from ICS, write to:

Integrated Computer Systems, Inc.
Box 5339,
Santa Monica,
California 90405

[14] Future Project Plans

[14] While all of the Project’s regular services in support of the UCSD Pascal™ System are being
transferred to SofTech Microsystems, we expect to continue a substantial level of research and
development, and education activities at UCSD. During the next year or two, we anticipate that only a
small part of the financial support for these activities will come from royalties paid to the University under
the sole license agreement with SofTech Microsystems.Vi rtually no support will come from regular
University of California operating budgets. Ifthe activity is to continue, the remaining support will have to
come from other sources. The principal sources available to us are federal research grants or contracts, and
grants from industrial firms under an “associates program”. The potential sources for federal grants or
contracts are very limited at this time, and only one small contract is expected during the next academic
year.

[14] Industrial associates programs are often the primary source of support for engineering oriented
research projects at many universities. Undersuch a program, each of many member companies contribute
each year an amount of money comparable to the cost of supporting the work of one graduate student.
Several firms have already expressed an interest in joining such a program for the UCSD Pascal™ Project.
We hav ebeen effectively unable to move ahead on organizing the UCSD Pascal™ Associates program until
the licensing details described in this newsletter had been worked out.A prospectus will be sent shortly to
fi rms known to have an interest in the Project. Inquiries would be most welcome from others.We are
particularly grateful to Philips Research Laboratories, who have contributed without waiting for the
organizing papers.

[14] Among the distinct activities, currently ongoing in the Project at UCSD, and for which financial
support is being sought, are the following:

[14] a) Native code generation from Pascal. Anexperimental system is nearing completion for translating
the P-code output of the UCSD Pascal™ compiler into the native machine language of the host processor.
The approach being taken will lead, hopefully, to the implementation of code generators for different host
processors with minimal effort. Theearliest test cases will be the PDP-11, the 8080 and the 6502. The
plan is to allow a programmer to designate which routines (procedures and functions) in a Pascal program
will be translated to execute directly in native code, rather than in the P-code of the P-machine interpreter.
Programs with mixed P-code and native code are already being used extensively, with the native code being
generated at present only by the Assembler associated with the host processor. Whereas the assembler
approach makes a program no longer portable from machine to machine, the generation of native code from
Pascal should maintain the portability while giving the execution efficiency of native code.

[14] b) Distributed processing. During the next few months, collections of microcomputers running UCSD
Pascal™ will be interconnected in several different “party line” bus configurations. Onemethod, that has
been studied extensively, uses high speed serial transmission. It allocates transmission rights to the stations
connected to the network according to full character slots timed within a cycle of about one second
duration. Anothermethod uses commercially available components for interconnection over an 8-bit

Reference Manual ucsd-psystem-xc 64

ucsdpsys_history(1) ucsdpsys_history(1)

parallel data bus similar to the IEEE 488 General Purpose Instrumentation Bus. One objective is to find an
interconnection method (both software and hardware) whereby mixed microcomputers, dumb terminals,
and large machines can communicate with each other within a large building complex at minimal cost.
Another is to learn how best to distribute the processing resources of a collection of microcomputers, some
of which will serve special functions (e.g. database access, number crunching, printer control, ...), while
others will be used primarily for access to the network. In the course of this work, several concepts of a
distributed operating system will be tested.

[14] c) UCSD Pascal™ Operating System improvements. Thelimitations of the present operating system
are well known, and many ideas have been advanced on how it could be improved. Work currently going
on should result in a far more general approach to handling the disk directory, in spite of the physical
limitations of the typical microcomputer on which the System runs. Beyond this, there are several
possibilities for designing multi-user versions of the UCSD Pascal™ System.

[14] d) Software Tools. Thepre-compiled Units facility of current versions of the UCSD Pascal™ System
permits the implementation of large libraries of frequently needed routines. These routines can be used by
a programmer as if they were extensions to the list of standard procedures and functions defined as part of
the Pascal language. Only those library files actually needed by the programmer must be present at
compile time and execution time. Work now starting is seeking an organized basis for designing the many
separate Units that a typical applications programmer may want. Unitsare being implemented for
applications ranging from the authoring of CAI packages to database management and interactive data
capture.

[14] e) Education Packages. Theauthoring package for creating Computer Aided Instruction materials is
being thoroughly revised making used of the Units facility. We expect this package to continue evolving as
experience grows in use of the existing introductory materials on Pascal programming, and as other CAT
authors reports on their experiences. With the expected installation this fall of a distributed processing
network connecting the microcomputers we use for regular teaching, experiments will begin in assisting
students via remote communication from a teaching aide at a separate microcomputer.

[14] In general, we expect that software resulting from any of this work, that turns out to be of good enough
quality to distribute to others, will be made available via the licensing arrangement with SofTech
Microsystems. Aswith the software already turned over to them, we expect SMI to add substantial value to
the new products of the Project by turning those products into commercially maintainable form, and by
providing continuing maintenance, support, and distribution services. All inquiries regarding distribution
schedules should be directed to them (at the address given earlier in this newsletter), as the Project will
retain very minimal staff resources to answer correspondence in the volume it has been received in recent
months. Naturally, the Project does intend to provide pre-release programs, documentation, and other
materials on an informal basis to sponsoring organizations, particularly those who are members of the
UCSD Pascal™ Associates program mentioned earlier.

SofTech Microsystems
[13] Electronics, 1979-Aug-16, p. 33: A notice that SofTech has acquired control of UCSD Pascal.

II.1 (date?)
[7] INTRINSIC units appear: linked directly from library at run-time, rather than being copied into the code
fi le. Systemnow has 32 segments rather than 16 (this change was not carried over to any later versions).
UNITS can be declared as resident or non-resident.

II.1x7b More swapping capabilities added: screen handlers and others can be made to stay on disc, loaded
only when needed.

SofTech Transition (when?)
[1] UC Tax Status Sealed Our Fate in early 1979, we were too successful. Though making no profit,
income exceeded $1m per year. UC files no income tax return... but only if all income is from Teaching,
Research, or Public-Service. UC feared UCSD Pascal “unrelated-business” income would trigger IRS
demand for tax return for all of UC.

[1] License was to be given to an outside for-profit vendor, and stop licensing from UCSD itself. SofTech
MicroSystems was the licensee, initially staffed by graduates of UCSD Pascal project.

Reference Manual ucsd-psystem-xc 65

ucsdpsys_history(1) ucsdpsys_history(1)

III
[1] The UCSD Pascal Micro-Engine was by Western Digital Corp, who built hardware for UCSD Pascal.
Team led by Mark Overgaard did the P-machine microcode. Cited initially as proof of special CPU design
advantages. BarrySmith at Oregon Software soon proved that clever compiler design made Pascal code
faster for the same chip with LSI-11 microcode.

[7] Volition Systems is a company formed by Randy Bush, of the original Pascal project at UCSD. From it
came the first truly reliable versions of III (for the MicroEngine, of course). It also produced the first
version of the Advanced System Editor.

[7] Among the changes introduced in version III is the first appearance of parallel processes, and the
routines and types needed to control them.

[7] III.E1 Third p-machine version, by Western Digital Inc. Developed for the Western Digital
MicroEngine, (thus far) the only hardware p-machine. Some architectural and philosophical changes from
previous versions. Bugsin implementation of some p-codes.

[7] III.F Some debugging, minor improvements in I/O. Single character typeahead only. Sub-versions are
F0 and F1.

[7] III.G0 More debugging. NOtypeahead whatever.

[7] III.H0 More debugging. Typeahead restored, but not reliable.Versions from Western Digital, from
Volition Systems, and for PDQ.

[7] III.H1 By Volition Systems for the PDQ-3. Much more reliable than other versions of III.

[7] III.H1 IME,

[7] III.H3 More debugging. Systemreliability improved, at cost of increased system size and reduced
available memory.

IV
[7] Most recent p-machine change. Extensive changes in both p-machine instruction set and Pascal system
architecture. SofTech MicroSystems licenses various companies (such as IBM and Xerox) to bring up IV.0
implementations on their machines.

[7] IV.1 Under license from SofTech MicroSystems, several companies (such as Sage Technology in
Nevada, and Network Consulting Incorporated in British Columbia) bring up IV.1 for various machines:

• NCI releases a version for the IBM PC more powerful, faster, and more reliable than that released by
IBM.

• Ticom Inc. releases a version for the DEC Rainbow 100.

Advanced Systems Editor now available under IV. Scheduling of parallel processes debugged.

Legacy
Authors

Gillian M. Ackland
[3] what? when?

[4] Acted as Editor for the compilation of The Proceedings of the July 1979 UCSD Workshop on
Pascal Extensions.

[5] Listed as an editor, UCSD Pascal II.0 User Manual.

Mark Allen
[3] what? when?

[8] Lists him as working with Richard Gleaves on the 6502 interpreter. This contradicts Richard
Gleave’s statement that it was Mark Overgaard. Were all 3 working on it?

S. Dale Ander
[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

Reference Manual ucsd-psystem-xc 66

ucsdpsys_history(1) ucsdpsys_history(1)

Lucia Bennett (now Yandell)
[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Marc Bernard
[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Kenneth Bowles
Director. It isn’t clear whether or not he wrote any UCSD p-System code.

[1] What was to become UCSD Pascal began in October 1974, by Kenneth Bowles and Mark
Overgaard.

Randy Bush
[7] Volition Systems is a company formed by Randy Bush, of the original Pascal project at UCSD.

Raymons S. Causey
[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

Charles Chapin
[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

J. Greg Davidson
Mentioned in the BASIC sources, 11-Apr-1979

Mentioned in the Setup sources, II.0 [D1] 11-Apr-1979

Mentioned in the Yaloe sources, Jun-1977.

[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Barry Demchak
[3] mentioned

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Gary J. Dismukes
Mentioned in the LIBMAP sources, Mar-1979

Mentioned in the Librarian sources, Mar-1979

[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Julie E. Erwin
[3] mentioned

[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Shawn M. Fanning
Mentioned in the Compiler sources, 1976..1979

[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

William P. Franks
Mentioned in the Assembler sources, (?) Sep-1978

Mentioned in the Disassembler sources, II.0 Sep-1978

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Karen Fraser
[3] what? when?

Reference Manual ucsd-psystem-xc 67

ucsdpsys_history(1) ucsdpsys_history(1)

Richard Gleaves
[3] spent the summer of 1978 working (with Mark Overgaard) on-campus at UCSD writing the 6502
interpreter that later became the basis for Apple Pascal. (We were paid UCSD’s standard student
“junior coder” wage of $5.50 per hour.) Trivia detail: the interpreter was developed (and thus the first
6502-based Pascal system booted) on a Rockwell box.

[3] At the end of the summer 1978 Bill Atkinson started showing up in the lab, and he worked closely
with Mark Overgaard to get the thing going on the Apple II. Later Bill Atkinson offered Mark
Overgaard and Richard Gleaves jobs up in Cupertino, but they both turned him down because they
both wanted to stay in San Diego.

[3] Later worked with Barry Demchak at ACD to co-develop the AOS (Advanced Operating System)
variant of UCSD Pascal.

C. Richard Grunsky
[3] what? when?

Albert A. Hoffman
Mentioned in the Compiler sources, 1976..1979

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Robert J. Hofkin
Mentioned in the LIBMAP sources, Sep-1978

Mentioned in the Long Integer sources, Jun-1977

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Richard S. Kaufmann
Worked on the Editor, 11-Oct-1978, 10-Dec-1978

Mentioned in the Yaloe sources, Jun-1977, 7-Oct-1977, 9-Feb-1978.

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Mary K. Landauer
[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

Nancy Lanning
[3] what? when?

Peter A. Lawrence
[3] mentioned

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

J. Raoul Ludwig
[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

Joel J. McCormack
[3] mentioned

[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Robert A. Nance
[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Mark D. Overgaard
[1] What was to become UCSD Pascal began in October 1974, by Kenneth Bowles and Mark
Overgaard.

[6] Unlike most of the contributors, who were undergraduate students, Mark Overgaard was a graduate
student.

[3] spent the summer of 1978 working (with Richard Gleaves) on-campus at UCSD writing the 6502

Reference Manual ucsd-psystem-xc 68

ucsdpsys_history(1) ucsdpsys_history(1)

interpreter that later became the basis for Apple Pascal.

[3] At the end of the summer 1978 Bill Atkinson (from Apple) started showing up in the lab, and he
worked closely with Mark Overgaard to get the thing going on the Apple II. Later Bill Atkinson
offered Mark Overgaard and Richard Gleaves jobs up in Cupertino, but they both turned him down
because they both wanted to stay in San Diego.

[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

David A. Reisrier
[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Bruce Sherman
[3] what? when?

Keith Allan Shillington
Mentioned in the Yaloe sources, 11-Aug-1977, 13-Sep-1977.

[2] Collected, Edited and distributed the copies of documentation and software for UCSD Pascal in it’s
early days on campus. Moved with the system to SofTech MicroSystems, and stayed with it for just
over a year.

[3] spent the summer of 1978 working (with Richard Gleaves) on-campus at UCSD writing the 6502
interpreter that later became the basis for Apple Pascal.

[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

[5] Listed as an editor, UCSD Pascal II.0 User Manual.

David A. Smith
[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

David M. Steinore
[5] Listed as a software author, UCSD Pascal II.0 User Manual.

George Symons
[3] what? when?

Roger T. Sumner
Mentioned in the System sources, Jan(?)-1977.

Mentioned in the Compiler sources, 1976..1979

Mentioned in the Filer sources, I.3 Jan(?)-1977.

Mentioned in the Librarian sources, I.5 Sep-1978

Mentioned in the Linker sources, I.5f Jan-1978, II.0 1-Mar-1979

Mentioned in the Long Integer sources, Aug-1978.

Mentioned in the Yaloe sources, 13-Sep-1977, 24-Sep-1977.

[2] Roger had been involved with the UCSD Pascal Project from it’s 1974 inception. While Roger
was a junior at UCSD’s Rev elle College, Dr. Bowles asked him to participate in the Project’s system
software design and development. Specifically, Roger’s contributions to UCSD Pascal include the
porting of Urs Amman Pascal compiler to the UCSD Pascal environment, and the design and
implementation the PDP-11/LSI-11 P-Code interpreter and device drivers, the UCSD Pascal Operating
System, Pascal language intrinsic functions, Filer utility and Linker utility.

[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

Reference Manual ucsd-psystem-xc 69

ucsdpsys_history(1) ucsdpsys_history(1)

Steven S. Thom(p)son
Mentioned in the Filer sources, I.5 Jun(?)-1978, II.0 Jan(?)-1979

[5] Listed as a software author, UCSD Pascal II.0 User Manual.

John VanZandt
Compiler (?)

Dennis J. Volper
Mentioned in the Assembler sources, 27-Sep-1978

[5] Listed as a documentation author, UCSD Pascal II.0 User Manual.

Bavid B. Wollner
[5] Listed as a software author, UCSD Pascal II.0 User Manual.

References
[1] http://www.jacobsschool.ucsd.edu/Pascal/ppt/KenBowles.ppt

[2] http://www.jacobsschool.ucsd.edu/Pascal/bios.html

[3] http://www.threedee.com/jcm/psystem/

[4] http://www.moorecad.com/standardpascal/pug_newsletter_17.pdf

[5]
http://miller.emu.id.au/pmiller/ucsd−psystem−um/reconstruct/00−frontice.html

[6] http://ucsdmag.ucsd.edu/magazine/vol1no3/features/pascal.htm

[7] http://williambader.com/museum/at/psysversions.html

[8] http://www.kernelthread.com/publications/appleoshistory/1.html

[9] http://standardpascal.org/pug_newsletter_04.pdf

[10] http://standardpascal.org/pug_newsletter_08.pdf

[11] http://standardpascal.org/pug_newsletter_09_10.pdf

[12] http://standardpascal.org/pug_newsletter_11.pdf

[13] http://standardpascal.org/pug_newsletter_15.pdf

[14] http://computer−refuge.org/bitsavers/pdf/westernDigital/
WD90_Pascal_Microengine/UCSD_PascalNewsl%234_Jul79.pdf

[15] http://www.museumstuff.com/learn/topics/UCSD_p-System

[16] http://en.wikipedia.org/wiki/Ucsd_pascal

BOOTSTRAPPING
This section covers how to build a UCSD Pascal system, when all you have is the source code, and none of
the authors are around to ask.

The process breaks into several stages.

• The first stage is to cross compiler the minimum set of this to grep a system going.

• The second stage is to run the cross compiled system, and use it to “natively” compiler itself.

• The third stage is a double check: use the result of stage 2 to compile everything again. Theresult should
be identical to the result of the second stage.

Stage Zero
In 2006 the UCSD issued a non-commercial royalty-free License for source code written before 1-Jun-1979
by UCSD employees. You need to download the system sources.

http://www.bitsavers.org/bits/UCSD_Pascal/ucsd_II.0/

You need a p-code interpreter (also know as a p-machine or a virtual machine) in order to run the code.
Fortunately there are a number of these on the Internet, mostly written in portable C.

Reference Manual ucsd-psystem-xc 70

ucsdpsys_history(1) ucsdpsys_history(1)

http://ucsd−psystem−vm.sourceforge.net/

Stage One
Compiling the source code is a challenge, if you want to completely avoid any suggestion of a proprietary
taint. Usually, this means not wanting to use the proprietary Apple Pascal disk images that are available on
the Internet.

You need to cross compile the system. This is needed in order to be able to run the cross compiled
compiler (see next step) “natively”. This becomes the SYSTEM.PASCAL file.

You need to cross compile the native compiler. Howev er this is not sufficient, because the native compiler
uses several intrinsic units. Once compiled, this becomes the SYSTEM.COMPILER file.

You need to cross compile the PASCALIO unit, to enable the compiler to deal with real numbers. This unit
is added to the SYSTEM.LIBRARY file.

You need to cross compile the LONGINTEGERS unit, to enable the compiler to deal with long integers.
This isn’t complete, yet, because you must also cross assemble the DECOPS code, and link it into the long
integers unit. This unit is added to the SYSTEM.LIBRARY file.

You need to cross compile the linker. This is needed so that assembler output and compiler output can be
linked, in order to build completely linked units. This becomes the SYSTEM.LINKER file.

You need to cross compile the librarian. This becomes the LIBRARIAN.CODE file. Thisis needed to
build the SYSTEM.LIBRARY file, containing all of the intrinsic units, when you perform the native build.

You need to cross compile the assembler. This becomes the SYSTEM.ASSMBLER file. Thisis needed to
build the long integer intrinsic unit, when you perform the native build.

Useucsdpsys_mkfs(1) to create a new disk image. Useucsdpsys_disk(1) to copy all the system files into
the disk images.You now hav ea minimal running system.

Stage Two
Run the system produced in Stage One, using this system repeat of Stage One, but performing native
compiles,etc, to produce the new disk image.You now hav ea self-hosting system, probably.

Stage Three
This is a repeat of Stage Two, using the system produced in Stage Two. The end result should be a disk
image containing files identical to that of stage two. If there are differences, there is a bug somewhere. If
there are no significant differences, you now hav ea self-hosting UCSD p-System, for the first time singe
the mid-1980s.

LESSONS
This section covers some of the things learnt while developing the cross compiler.

Moti vation
The ucsd-psystem-xc project was started for two reasons. Thefi rst was a desire to try out some ideas about
factory methods and how they apply to language compilers. The second was a certain nostalgia about the
Apple Pascal system (base on II.1) from the early 1980s. The two just happened at the same time, and on
2006-May-22 the ucsd-psystem-xc project was the result.

Another significant 2006 event, unknown to the author at the time, was the publication by UCSD of a
royalty-free License for non-commercial use of UCSD Pascal. Notan open source license, but good
enough to work with.

Of course, a nagging memory of perceived limitations of the UCSD system, and its compiler, was
motivation to use the skills learnt in the intervening decades to do it “better” this time around.

The early stages of the compiler resulted in an LCA’07 conference paper (available on the project web site).
However the project languished after that, for lack of time. Also, the techniques had been proven, but a
substantial slab of time (months, full time) would be necessary to fill in all the missing pieces.

In 2010 the opportunity came that enabled work on the code to resume. More and more UCSD Pascal
system sources were becoming available on the Internet, making the idea of a self-hosted II.1 system, built
from the sources, from scratch, became a realistic goal. In 2010 most of the UCSD systems running on

Reference Manual ucsd-psystem-xc 71

ucsdpsys_history(1) ucsdpsys_history(1)

emulators used either Apple Pascal disk images (obviously proprietary), or other proprietary forms, and
none of which had source code available.

2010-March
A system with no proprietary pieces was possible, even with the non-commercial rider. Perhaps time, and
the existence of an otherwise open source implementation, will give UCSD Legal Department the needed
nudge to issue an open source license, at some time in the future.

Looking at the II.0 sources, it would appear that the first block of code files is slightly different than that of
Apple Pascal, the compiler I am using to verify the output of the cross compiler. This is because intrinsic
units, and the ability to have more than 16 segments, were both II.1 features.

0.2, 2010-Apr-01
Version 0.2 of the cross complier was released.

Shortly after this (2010-Apr-06) the ucsd-system-vm project was initiated, as a friendly fork of Mario
Klebsch’s excellent p-interp project. This would permit adding features to the interpreter, and bug fixes if
any were needed.

This was the beginning of my search for a p-machine test suite, on the assumption that as the UCSD team
ported their system to ever more microcomputers, they would have needed a way to validate the different
ports.

The built-in EXIT function
Pascal has the ugly feature

exit(functionName)
which is approximately the equivalent of areturn statement. Butis can also act as a non-local return
statement. Non-localreturn? Who thought that was a good idea? An exception-lite concept, maybe?
Great, but for the fact that exceptions are ugly as well.

Easy enough to implement, function names are already first-class expressions, so we can use the regular
expression grammar without trouble, and adding another built-in “function”.

But it gets worse. You may recall that programs are declared with a name, as in

program sewer;
begin
end.

so you can also say

exit(sewer)

and leave the program, um, “cleanly”.Well, the symbolis in the symbol table, so we just add another type
to the list of acceptable types you can use for parameter one of the exit “function”.

But wait, there’s more. You can also say

exit(program)

this lets you non-local-return from the program from within units, when you don’t actually know the name
of the program.

This requires adding another expression production to the grammar. It is implemented using a usually-
inaccessible “program” symbol, that has the appropriate segment and procedure number.

The chr Function
Thechr function on UCSD native compiler did unexpected things (or, unexpected by today’s standards)
mostly because it leaves the value on the top of the stack unchanged. This is probably not ISO 7185
conforming. For now, the cross compiler works the same way.

In the future, masking the value with 0xFF would be better, provided we optimize the mask away for STB
expressions and relevant STP expressions.

Reference Manual ucsd-psystem-xc 72

ucsdpsys_history(1) ucsdpsys_history(1)

Set Opcodes Asymmetric
The native compiler understands set=set, set<>set, set<=set (known as an improper subset), set>=set
(improper superset), but does not implement set<set (known as a proper subset) and set>set (proper
superset).

This stems from the p-machine definition, that only defines these four. But why? Addingrun-time support
for these would be less than 40 bytes in the interpreter, less than 20 on some architectures. Why leave them
out? Itis asymmetric, for very little savings.

This missing set comparisons were added to the ucsd-psystem-vm p-machine 2010-May-11, and first
released 2010-May-17. The tests use the cross compiler, of course, to generate the new opcodes.

String Handling
The builtinconcat function is sued to join strings together. It is implemented as several calls to the
systemsconcat procedure.

procedure sconcat(var src, dest: string; destleng: integer);
begin

if length(src) + length(dest) <= destleng then
begin

moveleft(src[1], dest[length(dest) + 1], length(src));
dest[0] := chr(length(src) + length(dest))

end
end

What happens when the results don’t fit? Perhapsa runtime error would be more appropriate?

This is compounded by the fact that there could be more than one string being joined together. It is
implemented by the compiler as multiple calls to segment 0SCONCATprocedure, one for each argument.
The ugly part is thatconcat(a, b, c) will return concat(a, c) if concat(a, b) would
overflow but concat(a, c) would not. This is because the compiler generates these calls:

temp := ""
sconcat(temp, a, sizeof(temp));
sconcat(temp, b, sizeof(temp));
sconcat(temp, c, sizeof(temp));

at which point the aboveSCONCATcode silently doing nothing on overflow looks very, very wrong.

Standards
The UCSD pascal implementation predates the efforts to standardize the Pascal language, and had many
influences on the final result. Many UCSD coders were part of that process.

The problem with pre-dating the standard is that, inevitably, UCSD Pascal was not, and is not, standard
conforming. Thereis the possibility, initially with the cross compiler, to retro-fit compliance; or, as much
compliance as possible without breaking existing programs.

0.2, 2010-Apr-19
Version 0.2 of the cross compiler is released.

It is now able to compile the UCSD II.0 compiler source code. Doesn’t produce a usable native compiler at
this stage.

0.3, 2010-Apr-27
Version 0.3 of the cross compiler is released.

It is now able to compile all of the II.0 system code (not the whole thing, just the “system” runtime
support). Doesn’t produce a usable runtime at this stage.

The test p-machine test suite was found in the II.0 sources.I had downloaded the II.0 sources months
earlier, and had overlooked the “diagnostics” volume.

0.4, 2010-May-06
Version 0.4 of the cross compiler is released. As of this release, all of the II.0 non-unit sources are able to
be compiled. The cross compiler now has support for all built-in functions, exceptstr that needs long

Reference Manual ucsd-psystem-xc 73

ucsdpsys_history(1) ucsdpsys_history(1)

integer support.

When used to produce a disk image, the emulator is able to run the system, and display the system prompt,
and Filer also appears to work. Noattempt to use the native compiler.

The odd Function
Theodd function, like thechr function, does not change the value on the top of the stack. This was used
in some very ugly hacks to gain access to and, or and not bit-wise arithmetic:

a,b,c: integer;

a := o rd(odd(b) and odd(c));
a := o rd(odd(b) or odd(c));
a := o rd(not odd(b));

The cross compiler does not support this usage, but instead overloads the AND, OR and NOT operators to
provide hack-free access to the bit-wise opcodes of the p-machine.

The UCSD authors were comfortable extending Pascal in novel directions, so why didn’t they just overload
the AND, OR and NOT expressions to handle integers as well? That would result in much cleaner code
than the ord/odd hack.

0.5, 2010-May-17
Version 0.5 of the cross compiler is released.

The milestone for this release was to pass II.0 the p-machine diagnostics. There were quite a few test
failures to work through. This found a number of errors in the cross compiler (fixed in this release), and
also a number of errors in the p-machine (also fixed).

Version 0.9 of ucsd-psystem-vm was released the same day.

Units
Getting ordinary units to work was relatively simple. The “internal” units (for want of a better term) are
more difficult because they are not documented anywhere.

(*$U−,R−*)
program pascalsystem;

globals...

unit pascalio;
interface

unit interface...
implementation

unit member procedures...

(* no BEGIN here *)
end;

begin
end.

This turned out to be relatively simple, by re-using most of the stand-alone unit grammar again, deeper
within the regular program grammar. Oh, and the(*$R−*) isn’t optional.

Long Integers
Long integer support is mostly finished. Itturns out that long integers can’t do all the things that integers
can do. In particular, the following operations are not supported:mod, odd , abs , andsqr .

While it would be possible to generate code to calculate themodvalue (using a division, a multiply and a
subtraction;i.e.slowly) it is frustrating that the long integerdiv already calculates the remainder, only to
discard it. Implementing long integermodwould only be only a few extra bytes of code in DECOPS.

Reference Manual ucsd-psystem-xc 74

ucsdpsys_history(1) ucsdpsys_history(1)

Another puzzle: why one DECOPS procedure, instead of 11? (Or 17, if you include the relational
operators). TheDECOPS selector only uses one byte per long integer operation (two bytes for
comparisons), but in any non-trivial program using long integers, it is all going to add up to a non trivial
overhead... even after one takes into account the additional procedure attribute and procedure dictionary
penalties. Andno dispatch tables or indirect jumps within DECOPS would mean faster performance, too.
It’s not as if that segment’s procedure dictionary is full or anything. Strange.

The call interface of the DECOPS procedure means that it can’t be implemented in Pascal, and then later
optimized by using assembly code. The assembly DECOPS could have then been cross checked with the
Pascal to verify correctness. This seems strange, given that long integer arithmetic is non-trivial to get
right.

The UCSD test suites I have found to date do not include long integers.

Long Integer Implementation
Long integers are implemented as a sign word, plus ((n+3)/4) words of 4 BCD digits each. Basically
unsigned arithmetic decorated with a sign.

The digits appear to have been stored in an order that made it impossible to use the 6502’s native BCD
support... of course the 6502 had bugs when you tried to mix BCD with interrupts, so maybe no big loss.
On the other hand, the Z80 had non-modal native BCD opcodes, but the BCD digits are in the wrong order
for the Z80 as well. No idea if the PDP-11 had native BCD opcodes or not.

I shudder when I recall how we were so hung up on printing numbers (the least common arithmetic
activity) that we consciously rejected obviously more efficient implementations like using radix 256 or
radix 64k representations.

0.6, 2010-May-30
Version 0.6 of the cross compiler is released.

The target for this release was to be able to compile units. Both ordinary units and “internal” units (for
want of a better term) are able to be compiled. This is essentially II.1 functionality, rather than II.0, in that
theseparate keyword is not particularly meaningful.

The SYSTEM.LIBRARY file can’t actually be completed because assembler support is required.

Ord and Odd revisited
It turns out the assembler sources use theord(odd(x) and odd(y)) hack when calculating hashes
for its symbol table. Surely it would have been easier to overload AND, OR and NOT to accept integer
parameters as well? Looking at the 2.0 native compiler sources, it only adds three lines of code.

0.7, 2010-Jun-21
This release is the first to be able to build non-trivial amounts of the ucsd-psystem-os project’s source base.
To facilitate this, many command now accept a “−−arch” option, to set the architecture; this makes getting
the endian-ness correct much easier, and the same option is used for all ucsd-psystem-xc commands that
need to know the byte sex.

Theucsdpsys_mkfs(1) command from the ucsd-psystem-fs project also accepts the same option, for the
same reason. The ucsd-psystem-fs 1.14 release was the same day.

The assembler parts of the system library can not yet be assembled, but the sources when cross compiler
produce a working system. The ucsd-psystem-os 1.1 release was the same day.

Linker Adventures
The II.0 codefile format is unchanged from the I.5 codefile format. This means that the II.0 sources from
BitSavers contain the I.5f linker sources.

However, I hav ebeen using the Apple Pascal compiler, assembler, and linker to check my results against,
and it is based on II.1, and the II.1 codefile format has more information in it than the II.0 (I.5) codefile
format. Initially I thought this would mean that the ucsd-psystem-os project would not be able to build
stage 2. However, this probably won’t be a problem, because while I recall a system with intrinsic units,
the II.0 sources do not contain any.

Reference Manual ucsd-psystem-xc 75

ucsdpsys_history(1) ucsdpsys_history(1)

This doesn’t preclude adding intrinsic units to stage 1, and so I can proceed to implement drop-in
replacements for the Apple intrinsics, if that is how things turn out.

Name Expression Factories
The code uses factories in a number of places, but not for building name expressions, for variables and the
like. However, the code has been refactored so that symbols create their own name expressions. This
simplifies the code, removes a bunch of down-casts, and better suits the philosophy of the rest of the code.

This permits several derivations of the symbol variable class, including global, local, unit (needing
relocation), and external segments.

But how do the specialized symbols get created? By symbol factories of the scope, of course. Each scope
knows what kinds of symbols it can create.

COPYRIGHT
ucsdpsys_historyversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_historyprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 76

ucsdpsys_libmap(1) ucsdpsys_libmap(1)

NAME
ucsdpsys_libmap − print map of UCSD p-System code file

SYNOPSIS
ucsdpsys_libmap[option...] code-file-name...
ucsdpsys_libmap −V

DESCRIPTION
Theucsdpsys_libmapprogram is used to print out a map of a UCSD p-System code file. Thisis equivalent
to theLIBMAP program which comes with the UCSD p-System, but you can run it from Unix.

OPTIONS
The following options are understood:

−d

−−debug
Increase the debug output level.

−o filename

−−output=filename
Write the output to the named file, rather than the standard output.

−P release-name

−−p−machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and the available opcodes). This defaults to “II.1” if not set.

−V

−−version
Print the version of theucsdpsys_libmapprogram being executed.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_libmapcommand will exit with a status of 1 on any error. Theucsdpsys_libmapcommand
will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_disassemble(1)

disassemble a UCSD p-System code file

ucsdpsys_link(1)
UCSD p-System codefile linker

COPYRIGHT
ucsdpsys_libmapversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_libmapprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 77

ucsdpsys_librarian(1) ucsdpsys_librarian(1)

NAME
ucsdpsys_librarian − UCSD p-System codefile librarian

SYNOPSIS
ucsdpsys_librarian −−filecodefile[option...]
ucsdpsys_librarian −−version

DESCRIPTION
Theucsdpsys_librarianprogram is used to manipulate UCSD p-System Codefiles. It has functionality
similar to the LIBRARIAN program distributed with the UCSD p-System.

OPTIONS
The following options are understood:

−a filename

−−copy=filename
This option is used to name an alternate codefile from which to copy segments, using the
−−segmentoption. Thisfi le must already exist, and must be a valid codefile. Thisoption must
appear on the command lineafter the−−file or −−createoptions. Thisoption may be used more
than once.

−c filename

−−create=filename
This option is used to name a codefile to be created. It will replace any file of the same name.
This codefile will initially be empty. If you use this option, you cannot also use the−−file option.

−f filename

−−file=filename
This option is used to specify the codefile being manipulated. This file must already exist, and
must be a valid codefile. If you use this option, you cannot also use the−−createoption.

−l

−−list This option may be used to obtain a library listing. If use by itself, the−−file codefile is
unchanged. Ifuse on the end of a more complex command line, it will show you the map of the
codefile it is going to write. This option must appear on the command lineafter the−−file
option.

−n text

−−notice=text

−−copyright=text
This option may be used to change the text of the copyright notice embedded in the−−file
codefile, or to add a notice to a codefile that does not already have one. You will probably need
to use quotes to insulate white space and punctuation characters from the shell (or you can use
underscores instead of spaces, and they will be replaced by spaces).To remove the copyright
notice, use the empty string; you will need to quote it. This option must appear on the command
line after the−−file option. Thenotice is limited to 79 characters, more than that will be silently
truncated.

−o filename

−−output=filename
Usually theucsdpsys_librariancommand makes the changes to the−−file codefile in-place. This
option is used to select a different codefile to receive the results. This option may not be used
with the−−createoption.

−P release-name

Reference Manual ucsd-psystem-xc 78

ucsdpsys_librarian(1) ucsdpsys_librarian(1)

−−p−machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and the available opcodes). This defaults to “II.1” if not set.

−r name

−−remove=name
This option is used to remove the named segment from the−−file codefile. It is an error if the
segment is not present. The segment name isnotcase sensitive. This option must appear on the
command lineafter the−−file option. Thisoption may be used more than once.

−R name

−−force-remove=name
This option is used to remove the named segment from the−−file codefile. It is not an error if
the segment is not present. The segment name isnotcase sensitive. This optional also works for
segment numbers. This option must appear on the command lineafter the−−file option. This
option may be used more than once.

−X

−−remove-system-segments
This option is used to remove segments 0 and 2..6 from a codefile. Thiscan be necessary when a
(*$U−*) utility program contains dummy system segments.

−sname

−−segment=name
The option is used to a name segment from the−−copycodefile to be added to the−−file
codefile. Thesegment name isnotcase sensitive. This option must appear on the command line
after the−−copyoption. Thisoption may be used more than once.

If the form−−segmentname=numberis used, the segment will also be renumbered to the given
segment number.

−V

−−version
Print the version of theucsdpsys_librarianprogram being executed.

All other options will produce a diagnostic error.

EXAMPLES
This section contains a few example commands.

List the segments in the file
You can obtain a list of the segments in the codefile using the following command.

ucsdpsys_librarian −−file example.code −−list

This will produce the same output as theucsdpsys_libmap(1) command.

Copyright Notice
You can change the copyright notice in a codefile using the following command.

ucsdpsys_librarian −−file example.code \
−−notice "Copyright (C) 1812 Tchaikovsky"

The same command can be used to add a copyright notice to a codefile that doesn’t hav eone.

Remove Segments
You can remove a segment from a codefile using the following command.

ucsdpsys_librarian −−file example.code −−remove DUMMYSEG

The segment name isnotcase sensitive.

Reference Manual ucsd-psystem-xc 79

ucsdpsys_librarian(1) ucsdpsys_librarian(1)

Tr ansfer Segments
You can transfer segments between codefiles using the following command.

ucsdpsys_librarian −−file example.code \
−−copy fromhere.code −−segment EXAMPLE

The segment name is caseinsensitive.

In this example, all of the segments in “example.code” are preserved. If there was already a segment called
EXAMPLE it will be replaced. The “fromhere.code” codefile will be unchanged.

New Library
You can create a new library form a series of other codefiles using a command such as

ucsdpsys_librarian −−create=system.library \
−−copy pascalio.code −−segment pascalio=31 \
−−copy long_integer.code −−segment longinte=30 \
−−copy transcendental.code −−segment transcen=29

This leaves the contributing codefiles unchanged, and creates a completely new file file to hold the results.

EXIT STATUS
Theucsdpsys_librariancommand will exit with a status of 1 on any error. Theucsdpsys_librarian
command will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_assemble(1)

UCSD p-System cross assembler, for multiple CPU types

ucsdpsys_compile(1)
A cross compiler from Pascal to UCSD p-System codefiles.

ucsdpsys_disassemble(1)
A utility to disassemble UCSD p-System codefiles.

ucsdpsys_libmap(1)
Print segment maps of UCSD p-System codefiles.

ucsdpsys_link(1)
UCSD p-System codefile linker

COPYRIGHT
ucsdpsys_librarianversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_librarianprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 80

ucsdpsys_link(1) ucsdpsys_link(1)

NAME
ucsdpsys_link − UCSD p-System codefile linker

SYNOPSIS
ucsdpsys_link[option...] filename...

ucsdpsys_link −−version

DESCRIPTION
Theucsdpsys_linkprogram is used to link incomplete programs with the library units and external
procedures and functions that complete them.

OPTIONS
The following options are understood:

−d

−−debug
This option may be used to increase the debug output. The more time given, the more
voluminous the output.

−m filename

−−map=filename
This option may be used to request that a link map be written to the given file.

−n text

−−notice=text

−−copyright=text
This option may be used to set the copyright notice of the output codefile.

−o filename

−−output=filename
The option is used to specify the output file. Notoptional.

−P release-name

−−p−machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and the available opcodes). This defaults to “II.1” if not set.

−v

−−verbose
This option may be used to request progress information during the link. This was useful in
1.0MHz days, not so useful now.

−V

−−version
Print the version of theucsdpsys_linkprogram being executed.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_linkcommand will exit with a status of 1 on any error. Theucsdpsys_linkcommand will
only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_assemble(1)

UCSD p-System cross assembler, for multiple CPU types

Reference Manual ucsd-psystem-xc 81

ucsdpsys_link(1) ucsdpsys_link(1)

ucsdpsys_compile(1)
A cross compiler from Pascal to UCSD p-System codefiles.

ucsdpsys_disassemble(1)
A utility to disassemble UCSD p-System codefiles.

ucsdpsys_librarian(1)
UCSD p-System codefile librarian

COPYRIGHT
ucsdpsys_linkversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_linkprogram comes with ABSOLUTELY NO WARRANTY; for details see the LICENSE
fi le in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 82

ucsdpsys_littoral(1) ucsdpsys_littoral(1)

NAME
ucsdpsys_littoral − read UCSD Pascal and write C++

SYNOPSIS
ucsdpsys_littoral[option...] filename...

ucsdpsys_littoral −−version

DESCRIPTION
Theucsdpsys_littoralprogram is used to read a UCSD pascal program and write something that is nearly,
almost, but not quite, C++. This can very helpful when trying to replicate the functionality of a UCSD
Pascal program in a more modern environment.

OPTIONS
The following options are understood:

−o filename

−−output=filename
This option may be used to select where the output is written. It defaults to the name of the
source.text fi le, with the extension removed and “.cc ” appended.

−V

−−version
Print the version of theucsdpsys_littoralprogram being executed.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_littoralcommand will exit with a status of 1 on any error. Theucsdpsys_littoralcommand
will only exit with a status of 0 if there are no errors.

COPYRIGHT
ucsdpsys_littoralversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_littoralprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 83

ucsdpsys_opcodes(1) ucsdpsys_opcodes(1)

NAME
ucsdpsys_opcodes − UCSD p-System system.opcodes generator

SYNOPSIS
ucsdpsys_opcodes −etext-file binary-file
ucsdpsys_opcodes −dbinary-file text-file
ucsdpsys_opcodes −V

DESCRIPTION
Theucsdpsys_opcodesprogram is used to read a text template of an assembler’s opcode file and write the
equivalent binary file. Thisis used by theucsd-psystem-osproject, when building the assembler and
disassembler programs.

OPTIONS
The following options are understood:

−A name

−−architecture=name
This option is used to indicate the translation to be performed, and also the byte sex of the binary
fi les. Thearchitecture name can usually be found in the name of the binaryname.OPCODES
binary files. If a p-code mtype is given, it indicates that the data file is to be used by the p-code
disassembler, theOPCODES.II.0 fi le.

−e

−−encode
Encode a text file into a binary file. Thisis used to have an editable text representation of the file
contents, so that they can easily be edited, and version controlled.

−d

−−decode
Decode a binary file into a text file. Thiscan be used to reverse-engineer the text file from the
existing binary files. With the passing of time, the method originally used to create the binary
fi les has been lost.

−V

−−version
Print the version of theucsdpsys_opcodesprogram being executed.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_opcodescommand will exit with a status of 1 on any error. Theucsdpsys_opcodescommand
will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_assemble(1)

UCSD p-System cross assembler, for multiple CPU types

ucsdpsys_opcodes(5)
format of the OPCODES.II.0 file

COPYRIGHT
ucsdpsys_opcodesversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_opcodesprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

Reference Manual ucsd-psystem-xc 84

ucsdpsys_opcodes(1) ucsdpsys_opcodes(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 85

ucsdpsys_osmakgen(1) ucsdpsys_osmakgen(1)

NAME
ucsdpsys_osmakgen − write the Makefile for the ucsd-psystem-os project

SYNOPSIS
ucsdpsys_osmakgen[option...][filename...]
ucsdpsys_osmakgen −−version

DESCRIPTION
Theucsdpsys_osmakgenprogram is used to write theMakefile fi le for the ucsd-psystem-os project,
based on the file names provided.

The generatedMakefile fi le uses theucsdpsys_compile(1) cross compiler to bootstrap a UCSD p-System
from sources alone. The executables are then combined into disk images, using theucsdpsys_mkfs(1) and
ucsdpsys_disk(1) file system tools. Theucsdpsys_assemble(1) multi-target cross assembler is used to
assemble any necessary assembler code. Theucsdpsys_setup(1) tool is used to translate a text
representation of SYSTEM.MISCINFO, if present, into the binary form.

The source files will be scanned, usingucsdpsys_depends(1), for include dependencies, and the results
incorportaed into the generatedMakefile fi le.

Directory Structure
Theucsdpsys_osmakgencommand takes its cues from the names of the files you give to it.

program/main.text
The existence of a file with this name pattern indicates that theprogram is to be compiled using a
Pascal compiler. That file can always include other files, but only from the same directory. The
codefile resulting from the compilation will be placed into
stage n/ host/codefiles/ program/main.code

If there is an assembler component, the output of the compilation ismain.pas.code , and then
theucsdpsys_link(1) command is used to linkmain.pas.code andmain.asm.code to
form the finalmain.code fi le.

arch/ This directory contains subdirectories, each one named for a specfic microprocessor. Each of
these subdirectories contain various programs and library components specific to that
microprocessor. Examples include “pdp11”, “z80”, and “6502”.

arch/$(arch)/
Within the generatedMakefile fi le, the relevant subdirectoiry is always accessed using this
construct.

arch/$(arch)/ program/main.asm.text
The existence of a file with this name pattern indicates that theprogram is to be built using a
cross assembler. That file can always include other files, but only from the same directory. The
codefile resulting from the assembly will be placed into
stage n/ host/codefiles/ program/main.asm.code

Theucsdpsys_link(1) command is used to linkmain.pas.code andmain.asm.code to
form the finalmain.code fi le.

Note: the assembler component is in a directory named the same as the Pascal portion of the
program. However, it is an archsub-directory, so that it is possible to have all of the sourec code,
including all architecture variants, in the same source tree.

arch/$(arch)/assembler/main.text
Each microprocessor as its own assembler, and this is where it may be found. Note we have not
yet recovered the source code to all of the assemblers, so coverage will be inconsistent.

arch/$(arch)/assembler/error-messages.text
This file, if present, will be used to create the$(arch).ERRORS data file, by processing it with
theucsdpsys_errors(1) command.

Reference Manual ucsd-psystem-xc 86

ucsdpsys_osmakgen(1) ucsdpsys_osmakgen(1)

arch/$(arch)/assembler/opcode-data.text
This file, if present, will be used to create the$(arch).OPCODES data file, by processing it
with theucsdpsys_opcodes(1) command.

host/ This directory contains subdirectories, each one named for a specfic host system (brand name)
that are implemented using a micro processor, but include varying sets of peripherals. Each of
these subdirectories contain various programs and library components specific to that host
hardware. Examplesinclude “terak”, “cpm”, and “apple”.

host/$(host)/
Within the generatedMakefile fi le, the relevant subdirectoiry is always accessed using this
construct.

host/$(host)/miscinfo.text
This is the location of the host-specific text source file of theSYSTEM.MISCINFOdata file.

stage n/system.syntax
This file is constructed from thecompiler/error-messages.text fi le, if present.

OPTIONS
The following options are understood:

−A name

−−architecture=name
This option may be used to specify an alternative architecture name in the generated Makefile.
By default, it is calculated from the name of the host.You should need this option very rarely.

−b

−−no-blurb
This option may be used to suppress the extensive comments generated into the Makefile.

−c number

−−change=number
This option is used to specify the number of the Aegis change set to ask for the list of file names.

−C text

−−copyright=text
This option may be used to specify the copyright notice to be attached to the system library. Use
the empty string to have no copyright notice.

−H name

−−host=name
This option may be used to specify an alternative host system name. Defaults to “klebsch”, in
reference to theucsdpsys_vm(1) interpreter written by Mario Klebsch.

−o filename

−−output=filename
This option may be used to specify the name of the file to be written. Defaults to “Makefile” if
not given. Thename “−” is understood to mean the standard output.

−p name

−−project=name
This option is used to specify the name of the Aegis project to ask for the list of file names. If
you specify neither an Aegis change set nor an Aegis project name, only filename named omn the
command line are considered.

−V

Reference Manual ucsd-psystem-xc 87

ucsdpsys_osmakgen(1) ucsdpsys_osmakgen(1)

−−version
Print the version of theucsdpsys_osmakgenprogram being executed.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_osmakgencommand will exit with a status of 1 on any error. Theucsdpsys_osmakgen
command will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_assemble(1)

UCSD p-System multi-target Cross Assembler

ucsdpsys_compile(1)
UCSD p-System Cross Compiler

ucsdpsys_depends(1)
Include file dependency finder.

ucsdpsys_disk(1)
UCSD p-System disk image manipulation.

ucsdpsys_mkfs(1)
UCSD p-System disk image creator.

ucsdpsys_setup(1)
UCSD p-System SYSTEM.MISCINFO encoder and decoder

ucsdpsys_vm(1)
UCSD p-System virtual machine (p-code interpreter).

COPYRIGHT
ucsdpsys_osmakgenversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_osmakgenprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 88

ucsdpsys_pretty(1) ucsdpsys_pretty(1)

NAME
ucsdpsys_pretty − UCSD p-System Pascal pretty printer

SYNOPSIS
ucsdpsys_pretty[option...] filename
ucsdpsys_pretty −−version

DESCRIPTION
Theucsdpsys_prettyprogram is used to re-format the source file of a Pascal program. The re-formatted
program is written to the standard output.

OPTIONS
The following options are understood:

−d

−−debug
This option may be used to increase the verbosity of debug output. May be specified more than
once.

−fname

−−feature name
This option may be used to turn enable or disable the various features. Seeucsdpsys_compile(1)
for more information.

−Idirectory

−−include directory
This option may be used to nominate a directory to be search for include files. Thisoption may
be used more than once.

−ofilename

−−output filename
This option may be used to redirect the output to the named file. If not specified, output will be
written to the standard output.

−V

−−version
Print the version of theucsdpsys_prettyprogram being executed.

−Wname

−−warning name
This option may be used to enable or disable the various warnings. Seeucsdpsys_compile(1) for
more information.

−y

−−grammar−trace
Turn on parse debugging. Very verbose. Intendedfor compiler developers only.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_prettycommand will exit with a status of 1 on any error. Theucsdpsys_prettycommand will
only exit with a status of 0 if there are no errors.

Reference Manual ucsd-psystem-xc 89

ucsdpsys_pretty(1) ucsdpsys_pretty(1)

COPYRIGHT
ucsdpsys_prettyversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_prettyprogram comes with ABSOLUTELY NO WARRANTY; for details see the LICENSE
fi le in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 90

ucsdpsys_setup(1) ucsdpsys_setup(1)

NAME
ucsdpsys_setup − manipulate the SYSTEM.MISCINFO file

SYNOPSIS
ucsdpsys_setup −etextfile datafile

ucsdpsys_setup −ddatafile textfile

ucsdpsys_setup −V

DESCRIPTION
Theucsdpsys_setupprogram is used to encode and decode theSYSTEM.MISCINFOconfiguration file.

This configuration file is read bySYSTEM.PASCALwhen the system boots, and is used to control how the
system output terminal is used for many operations. Itis also used by editors (SYSTEM.EDITORor
YALOE) to understand how to manipulate the screen.

Think of it as a very poorterminfo(3) substitute. Theucsdpsys_vm(1) virtual machine takes care of
translating the terminal control characters, and usescurses(3) to be terminal independent.

The result of theucsdpsys_setup −dcommand is in the same format as theucsdpsys_setup −eexpects as
input. Thismeans you can, for example, track its contents with a version control system.

Field Values
A effort has been made to be as similar as possible to the originalSETUPprogram, except that it isn’t
interactive. The fields all have the same names as the originalSETUPprogram, and accept similar values.

boolean The valuestrue andfalse , and several synonyms for each, are understood.

char The values are given as decimal integers, or control characters may be given using their tradition
three-character ASCI names.

integer Integer values fields may be given as decimal text.

OPTIONS
The following options are understood:

−A name

−−architecture=name
This option may be used to specify the machine type this file describes. This is used to encode
and decode the 16-bit fields in the data.

−d

−−decode
This option is used to decode the binary form into the text form.

−e

−−encode
This option is used to encode the text form into the binary form.

−P release-name

−−p−machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and the available opcodes). This defaults to “II.1” if not set.

−V

−−version
Print the version of theucsdpsys_setupprogram being executed.

All other options will produce a diagnostic error.

Reference Manual ucsd-psystem-xc 91

ucsdpsys_setup(1) ucsdpsys_setup(1)

EXIT STATUS
Theucsdpsys_setupcommand will exit with a status of 1 on any error. Theucsdpsys_setupcommand will
only exit with a status of 0 if there are no errors.

COPYRIGHT
ucsdpsys_setupversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_setupprogram comes with ABSOLUTELY NO WARRANTY; for details see the LICENSE
fi le in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 92

GPL(GNU) FreeSoftware Foundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. Bycontrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program − to make sure it remains free software for all its users.We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to any other work released this way by its authors.You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you received. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. Thesystematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

GNU GPL 93

GPL(GNU) FreeSoftware Foundation GPL(GNU)

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees”and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “ covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or
secondarily liable for infringement under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “ Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that is
widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form.A “ Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of the
specific operating system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose tools
or generally available free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

GNU GPL 94

GPL(GNU) FreeSoftware Foundation GPL(GNU)

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affi rms your unlimited
permission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. ThisLicense acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force.You may convey covered works to others for the sole purpose of
having them make modifications exclusively for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in conveying all material for which you do not
control copyright. Thosethus making or running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any leg al power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or modification of the work as a means
of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply to
the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all
notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to
the whole of the work, and all its parts, regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not invalidate such permission if you have
separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if
the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need
not make them do so.

GNU GPL 95

GPL(GNU) FreeSoftware Foundation GPL(GNU)

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to
apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only
if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer
equivalent access to the Corresponding Source in the same way through the same place at no further
charge. You need not require recipients to copy the Corresponding Source along with the object code.
If the place to copy the object code is a network server, the Corresponding Source may be on a
different server (operated by you or a third party) that supports equivalent copying facilities, provided
you maintain clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Library, need not be included in conveying the object code work.

A “ User Product” is either (1) a “consumer product”, which means any tangible personal property which is
normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved in favor of coverage. For a particular product received by a particular user, “normally
used” refers to a typical or common use of that class of product, regardless of the status of the particular
user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from a
modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product,

GNU GPL 96

GPL(GNU) FreeSoftware Foundation GPL(GNU)

and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is
characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementation available to the public in source code
form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“A dditional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal
in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in
the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed
by this License along with a term that is a further restriction, you may remove that term. If a license
document contains a further restriction but permits relicensing or conveying under this License, you may
add to a covered work material governed by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files,
a statement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

GNU GPL 97

GPL(GNU) FreeSoftware Foundation GPL(GNU)

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license,
or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. Theseactions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License.You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. Ifpropagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affi rmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing

GNU GPL 98

GPL(GNU) FreeSoftware Foundation GPL(GNU)

the Program or any portion of it.

11. Patents.

A “ contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this
License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contributor version. For purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement).To “grant” such a patent license to a party means to make such an agreement
or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the
work is not available for anyone to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent
license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient’s
use of the covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License.You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party
based on the extent of your activity of conveying the work, and under which the third party grants, to any of
the parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to

GNU GPL 99

GPL(GNU) FreeSoftware Foundation GPL(GNU)

infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying from those to whom you convey the
Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. Theterms of this License will continue to apply to the
part which is the covered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. Ifthe Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations
are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULDTHE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DAT A BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

GNU GPL 100

GPL(GNU) FreeSoftware Foundation GPL(GNU)

SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiv er of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
fi le to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C)year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Seethe GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type “show w”. This is free
software, and you are welcome to redistribute it under certain conditions; type “show c” for details.

The hypothetical commands “show w” and “show c” should show the appropriate parts of the General
Public License. Of course, your program’s commands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.

GNU GPL 101

ucsdpsys_codefile(5) ucsdpsys_codefile(5)

NAME
ucsdpsys_codefile − UCSD p-System codefile format

DESCRIPTION
The UCSD p-System codefiles serve as both intermediate object files (the equivalent of Unix.o fi les), and
executables (the equivalent of Windows.exe fi les).

By convention, UCSD codefiles have a.code suffix, and their file type in the filesystem is set codeCODE
as well. For most commands that deal with codefiles, the UCSD system will automatically append.code
if the user does not.

As the UCSD p-System evolved, so did the codefile format. Most of these changes are backwards
compatible (later versions of the p-System can read the codefiles of previous versions), and a few are
forwards compaitible (earlier versions of the p-System can cope with codefiles from later versions of the
system).

A word of caution: while the I.5 linker can mostly handle II.0 codefiles, the p-code is different between the
two systems. Donot try to run a <= I.5 executable on a >= II.0 system, orvice versa.

By examining the Segment Dictionary, it is usually possible to determine whether a codefile is I.5 or earlier,
or II.0 or later.

CODEFILE LA YOUT
A UCSD p-System codefile has a one-block segment dictionary, followed by each of the segments.

Segment
Dictionary

First Segment

Second Segment

etc

Note that segments do not have to appear in order, although they frequently do. The Segment Dictionary is
able to place segments anywhere in the codefile.

Each segment has three parts:

Interface Text
(may be empty)

Procedures

Link Info
(may be empty)

While the Segment Dictionary format (see below) would suggest that Interface text can be placed anywhere
in the codefile, rather than immediately before the Procedure code, in practive this is not done, thus
providing an indirect way of knowing how many blocks of interface text are present.

SEGMENT DICTIONARY
The Segment Dictionary contains the locations of the segments, and also some meta-data about each
segment. Historically, it has been added to with each major release.

Byte Sex
The UCSD p-System can be hosted by both little-endian and big-endian machines. The native byte
ordering of the host is used in codefiles, including the segment dictionary. Whenever you see integers
(16-bits) and packed records, byte sex must be taken into account.

Version I.5
The Pascal declaration looks like this:

record
diskinfo: array [0..15] of

record

Reference Manual ucsd-psystem-xc 102

ucsdpsys_codefile(5) ucsdpsys_codefile(5)

codeaddr: integer;
codeleng: integer

end;
segname: array [0..15] of array[0..7] of char;
segkind: array [0..15] of integer;
textaddr: array [0..15] of integer;
filler: array [0..87] of integer;
comment: string[79]

end;

The record field are defines as follows:

codeaddr
The start of the segment’s code, in units of 512-byte blocks.

codeleng
The sizeof of the segment’s code, in bytes.

segnameThe segment’s name, truncated to 8 bytes, padded with spaces on the right if necessary. Must be
upper case. Must consist of letters and digits only, as this is checked by the UCSD p-System
native linker.

segkind
The segment kind.

LINKED (0)
No work is needed for this segment, it is executable as is.

HOSTSEG (1)
PASCAL host program outer block, when there is at least one EXTERNAL procedure
or function. Not executable.

SEGPROC (2)
PASCAL segment procedure, not host

UNITSEG (3)
If codelengis non-zero, this is a library UNIT definition. If codelengis zero, this is a
library UNIT reference.

SEPRTSEG (4)
The assembler procuces this kind of segment. Itis populated entirely with native code
procedures and functions.You use the linker to link HOSTSEG segments with
SEPRTSEG segments to produce LINKED segments.

textaddr The text of the INTERFACE section of a UNIT. Always ends with an IMPLEMENTATION
keyword followed by ten (10) spaces. It is in the usual textfile format (seeucsdpsys_text(5) for
more information) except that (a) it does not have the two block editor header, and (b) it could be
an odd number of blocks long, if the last block would have been all NUL bytes.

filler Unused. Mustbe filled to zero, so that zero can be used as the defualt value for backwards
compatibility.

comment
The is the copyright string added to the codefile using the(*$C comment*) control comment in
the source code. It will be empty if none was given; fill unused bytes with zero.

Version II.0
The II.0 codefiles had the same format as the I.5 codefiles. Thebig change in II.0 were the alterations to
the opcodes.

Version II.1
The Pascal declaration looks like this:

record

Reference Manual ucsd-psystem-xc 103

ucsdpsys_codefile(5) ucsdpsys_codefile(5)

diskinfo: array [0..15] of
record

codeaddr: integer;
codeleng: integer

end;
segname: array [0..15] of array[0..7] of char;
segkind: array [0..15] of integer;
textaddr: array [0..15] of integer;
seginfo: array [0..15] of

packed record
segnum: 0..255;
mtype: 0..15;
version: 0..7

end;
intrins: set [0..63] of boolean;
filler: array [0..67] of integer;
comment: string[79]

end;

Most of the fields are the same as for I.5. The differences are:

segkind
There are several new values

seginfo.segnum
blah blah blah

seginfo.mtype
blah blah blah

seginfo.version
blah blah blah

Version IV
The Pascal declaration looks like this:

dictionary chaining

endian word

COPYRIGHT
ucsdpsys_codefileversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_codefileprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

SEGMENT LAYOUT
Each segment has three parts:

Interface Text
(may be empty)

Procedures

Link Info
(may be empty)

Reference Manual ucsd-psystem-xc 104

ucsdpsys_codefile(5) ucsdpsys_codefile(5)

Interface Text
write this section. see above.

Procedures
The procedures section is indicated by thecodeaddrandcodelengfields in the Segment Dictioary. The
procedures are laid out as

First Procedure

Second Procedure

etc

Procedure Dictionary

The procedure dictionary can be located by using thecodelengvalue, because it appears and theendof the
segment’s code.

Procedures do not always appear in the segment in strict numerical order. Procedure numbers are allocated
by the compiler when it sees a procedure declaration. If it is declaredforward , or if it has nested
procedures, the code of other procedures may appear before it in the segment.

etc

Procedure 2 Pointer

Procedure 1 Pointer

Segment
Number

Number of
Procedures

The shortes segment ins two bytes: one byte for the segment number, and one byte for the procedure count
(zero).

Link Information
write this section

COPYRIGHT
ucsdpsys_codefileversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_codefileprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 105

ucsdpsys_errors(5) ucsdpsys_errors(5)

NAME
ucsdpsys_errors − UCSD p-System assembler error file format

DESCRIPTION
The UCSD Adaptive Assembler uses a binary error file. Thissimplifies the error processing, at the cost of

• error texts of limited length,

• significant difficulty of editing, and

• when measured in whole 512-byte blocks, little or no space savings.

• Inconsistent with the textual error file format used by the compiler.

By using a text file as the primary source, it can be edited easily, and placed under version control. The
binary file can be created from the text file using theucsdpsys_errors(1) command.

Format of the Text file
The text file is the same as for the compiler.

Comments have a hash (“#”) in the first column, and extend to the end of the line. Blank lines are ignored.

Each error message has a number, a colon (“: ”), and the text of the error message. Excess white space is
discarded. Thelines do not need to be in order, but there may be no duplicates. Error text lengths in excess
of 40 characters are an error.

Format of the Binary file
The error file declared as

type error_string: string[40];
var error_file: file of error_string;

That is, each error occupies 42 bytes of the file, even if the error text is significantly shorter. There is no
way to cram a longer error message into the file.

The file is indexed by error number, using

seek(error_file, error_num);

Error numbers that are not used contain a value of one space. Error zero exists in the file, and is unused.

EXIT STATUS
Theucsdpsys_errorscommand will exit with a status of 1 on any error. Theucsdpsys_errorscommand
will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_errors(1)

UCSD p-System assembler error file builder

COPYRIGHT
ucsdpsys_errorsversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_errorsprogram comes with ABSOLUTELY NO WARRANTY; for details see the LICENSE
fi le in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 106

ucsdpsys_opcodes(5) ucsdpsys_opcodes(5)

NAME
ucsdpsys_opcodes − format of the OPCODES.II.0 file

DESCRIPTION
Theucsdpsys_opcodes(1) command is used to generate the binaryname.OPCODESsystem file expected
by the UCSD p-System assemblers. It can also be used to reverse engineer and existing file into the text
equivalent.

Theucsdpsys_opcodes(1) command is used to generate the binaryOPCODES.II.0 system file expected
by the UCSD p-System disassembler (for p-code architectures). It can also be used to reverse engineer and
existing file into the text equivalent.

Format if the Assembler text file
Comments are permitted, they start at a hash (#) character, and finish at the end of the line.

Each opcode is a line of the form

{ " name", value, type },

Wheretypeis one of the known opcode type (see the Adaptive Assembler sources for more information).

The resemblance to a C initializer is not a coincidence.

Format if the Disassembler text file
Comments are permitted, they start at a hash (#) character, and finish at the end of the line.

The opcode lines make take one of two forms

number = type, " name";
number = type;

The first format describes most of the lines in the file. Thesecond format describes undefined opcodes, or
opcodes with names already known to the disassembler.

Format of the Assembler binary file
Each line of the source file is encoded into 12 bytes in the binary file.

0..7 The name, space padded on the right

8, 9 The value. Thebyte sex depends on the architecture.

10, 11 The opcode type.

The first 12 bytes are treated differently. They indicate the byte sex of the file. All bytes are zero, except
for the value bytes; they are to evaluate to 1, if you have the byte sex correct.

Format of the Disassembler binary file
There are two parts to the file: the opcode names and the opcode types.

For the opcode names, each entry in the file is 8 bytes wide, and space padded, indexed by opcode number.
Absent entries are set to all spaces. The first 52 opcodes do not appear in the table.

For the opcode types, each entry in the table is 2 bytes wide.

Just why they felt the need for a file formatted differently than the assembler’s data file is a mystery. The
answer is lost in the mists of time.

EXIT STATUS
Theucsdpsys_opcodescommand will exit with a status of 1 on any error. Theucsdpsys_opcodescommand
will only exit with a status of 0 if there are no errors.

Reference Manual ucsd-psystem-xc 107

ucsdpsys_opcodes(5) ucsdpsys_opcodes(5)

COPYRIGHT
ucsdpsys_opcodesversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_opcodesprogram comes with ABSOLUTELY NO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 1000

