srec_fpc(5) srec_fpc(5)

NAME
srec_fpc — four packed code file format

SYNOPSIS
All ASCII based file formats h& ame disadvantage in common: ytell need more than double the amount
of characters as opposed to the number of bytes to be sent. Address fields and checksumsveill add e
more characters. So the shorter the records, the more charaetets thaent to get the file across.

The FPC format helps to reduce the number of characters needed to send a file in ASCII format, although it
still needs more characters than the actual bytes it s&IS.stands for "Fouraeked Code". The reduc-

tion is accomplished by squeezing 4 real bytes into 5 ASCII charatteiasct every ASCII character will

be a digit in the base 85 number systeFhere arert’ enough letters, digits and punctuation markaila

able to get 85 different characters, but if we use both upper case and lower case letters we will manage.
This implies that the FP{ case sensitive, as @posed to all other ASCII based file formats.

Base 85
The numbering system is in base 85, and is somewhat hard to understand for us humans who are usually
only familiar with base 10 number§&ome of us understand base 2 and base 16 as well, but base 85 is for
most people somethingwe Luckily we dont haveto do ary math with this number systenWe just con-
vert a 32 bit number into a 5 digit number in base 882 hbit number has a range of 4,294,967,296, while
a 5 dgit number in base 85 has a range of 4,437,053,125, which is enough to do the trick. One drawback is
that we alvays hare o send multiples of 4 bytesyen if we actually want to send 1, 2 or 3 byteklnused
bytes are padded with zeroes, and are discarded at the receiving end.

The digits of the base 85 numbering system start at %, which represents the value of 0. Theahighest v
of a digit in base 85 is 84, and is represented by the character 'z’. If you want to check this with a normal
ASCII table you will notice that we kia used one character too nyAnWhy? |don't know, but for some

reason we ha o kip the ™ character in the r@. This means that after the *)’ character follows the '+’
character.

We @an use normal number amnsion algorithms to generate the FPC digits, with thigdifference. W&

have o check whether the digit is going to be equal or larger than the ASCII value for ™. If this is the
case we ha increment the digit once to stay clear of the '*'. In base 85 MSD digits go firstinli#l
number systems!

The benefit of this all is hopefully cledfor every 4 bytes we only hae o send 5 ASCII characters, as
opposed to 8 characters for all other formats.

Records
Now we take a bok at the the formatting of the FPC recorliée look at the record at bytevid, not at the
actual base 85 encodedide Only after formatting the FPC record at bytedewe convert 4 bytes at a
time to a 5 digit base 85 numbdf we don’t haveenough bytes in the record to fill the last group of 5 dig-
its we will add bytes with the value of 0 behind the record.

$ | ss | « | fiff | aaaaaaad dddddddd

The field are defined as:

$ Every line starts with the character $, all other characters are digits of base 85.
Ss Thechecksum. Aone byte 2’'s-complement checksum of all bytes of the record.
cc Thebyte-count. Aone byte value, counting all the bytes in the record minus 4.
ffff Format code, a tavbyte value, defining the record type.
aaaaaaaa

The address fieldA 4 byte number representing the first address of this record.
dddddddd

The actual data of this record.

Reference Manual SRecord 1

srec_fpc(5) srec_fpc(5)

Record Begin
Every record begins with the ASCII charact&." No spaces or tabs are alled in a record. All other
characters in the record are formed by groups of 5 digits of base 85.

Checksum field

This field is a one byte 2's-complement checksum of the entire re€ordeate the checksum nmalk me
byte sum from all of the bytes from all of the fields of the record:

Then tale the 25-complement of this sum to create the final checksum. The 2's-complement is simply
inverting all bits and then increment by 1 (or using thgaiee qerator). Checkinghe checksum at the
recevers end is done by adding all bytes together including the checksum itself, discarding all carries, and
the result must be $00. The padding bytes at the end of the line, shquétigteshould not be included

in checksum. But it doestreally matter if thg are, for their influence will be 0 anyway.

Byte Count
The byte countc counts the number of bytes in the current record minuodonly the number of address
bytes and the data bytes are counted and not the first 4 bytes of the record (checksum, byte count and for
mat flags). The byte count canveaany alue from 0 to 255.

Usually records hae 2 data bytes. It is not recommended to send tooyndata bytes in a record for that
may increase the transmission time in case of errors. Atsd aending only a f& data bytes per record,
because the addresgedhead will be too heavy in comparison to the payload.

Format Flags
This is a 2 byte numbgindicating what format is represented in this record. Onlyvef demats are \ail-
able, so we actually waste 1 byte in each record for treeafdiaving multiples of 4 bytes.

Format code 0 means that the address field in this record is to be treated as the absolute address where the
first data byte of the record should be stored.

Format code 1 means that the address field in this record is misimgly the last known address of the
previous record +1 is used to store the first data byte. As if the FPC format f@asehough already ;-)

Format code 2 means that the address field in this record is to be treated aseaaleledss. Relate ©
what is not really clearThe relatve aldress will remain in effect until an absolute address isvetei
again.

Address Field
The first data byte of the record is stored in the address specified by the Addresaafieldaa After
storing that data byte, the address is incremented by 1 to point to the address for the next data byte of the
record. Andso on, until all data bytes are stored.

The length of the address field isvays 4 bytes, if present of cours8o the address range for the FPC for
mat is alvays 2**32.

If only the address field is\gin, without ay data bytes, the address will be set as starting address for
records that ha ro address field.

Addresses between records are non sequential. There may be gaps in the addressing or the address pointer
may e&en point to lower addresses as before in the same file. \Bay ¢ime the sequence of addressing

must be changed, a format 0 record must be used. Addressing within one singlesreequgntial of

course.

Data Field
This field contains 0 or more data byt@he actual number of data bytes is indicated by the byte count in
the beginning of the record less the number of address bytesfirst data byte is stored in the location
indicated by the address in the address fidlffer that the address is incremented by 1 and the next data
byte is stored in that melocation. Thiscontinues until all bytes are stored. If there are not enough data
bytes to obtain a multiple of 4 we use 0x00 as padding bytes at the end of the record. These padding bytes
are ignored on the receiving side.

Reference Manual SRecord 2

srec_fpc(5) srec_fpc(5)

End of File
End of file is recognized if the first four bytes of the record all contain 0x00. In base 85 this will be
“ $9880484 . This is the only decent way to terminate the file.

Size Multiplier
In general, binary data will expand in sized by approximately 1.7 times when represented with this format.

Example
Now it's time for an ®ample. Inthe first table you can see the byte representation of the file to be trans-
ferred. Thedth row of bytes is not a multiple of 4 bytes. But that does not mdtiewe append $00 bytes
at the end until we do kia a nultiple of 4 bytes. These padding bytes are not counted in the byte count
however!
D81400000000B000576F77212044696420796F7520726561
431400000000B0106C6C7920676F207468726F7567682061
361400000000B0206C6C20746861742074726F75626C6520
591100000000B030746F207265616420746869733F000000
00000000
Only after comerting the bytes to base 85 we get the records of the FPC type file format presented in the
next table. Note that there isvedys a multiple of 5 characters to represent a multiple of 4 bytes in each
record.
$KL&@ %4 : , B. \ 200EPUX0K3r Q0J1))
$; UPR %84 : <Hn&FCG at <GVF(; GOwW w
$7FD1p%84 : LHy: >GTVY KI7@5E[kYz
$B[6\ ; 984 : \ KI n?GFWY/ gKI 1G5: ; - _e
$9088806
As you can see the length of the lines is clearly shorter than the original ASCII lines.

SEE ALSO
http://sbprojects.fol.nl/knowledge/fileformats/pfc.htm

AUTHOR
This man page was taken from the wbMeb page. It w&s written by San Bergmans <sanmail@big-
foot.com>

For extra points: Who iwented this format? Where is it used?

Reference Manual SRecord 3

