
srec_examples(1) srec_examples(1)

NAME
srec_examples − examples of how to use SRecord

DESCRIPTION
Thesrec_catcommand is very powerful, due to the ability to combine the the input filters in almost unlim-
ited ways. Thismanual page describes a few of them.

This manual page describes how to use the various input files, input filters and input generators. But these
are only examples, for more complete details, see thesrec_input(1) manual page.

The Commands Lines Are Too Long
If you are marooned on an operating system with absurdly short command line length limits, some of the
commands which follow may be too long.You can get around this handicap by placing your command line
in a file, sayfred.txt, and then tellsrec_cat(1) to read this file for the rest of its command line, like this

srec_cat @fred.txt
This also has the advantage of allowing comments, several lines and even indenting to make it more clear.
Comments start at a “#” and extend to the end of the line. Blank lines are ignored.

Of course, you could always upgrade to Linux, which has been sucking less for over 17 years now.

Your Examples Wanted
If you have a clever way of using SRecord, or have solved a difficult problem with SRecord, you could con-
tribute to this manual page, making it more useful for everyone. Sendyour contribution in an email to the
email address at the end of this manual page.

CONVERTING FILE FORMATS
The simplest of the thingssrec_cat(1) can do is convert from one EPROM file format to another. Please
keep in mind, as you read this section, that you can do many of these things simultaneously in one com-
mand. They are only broken out separately to make them easier to understand.

Intel to Motorola
One of the simplest examples is converting files from Intel hex format to Motorola S-Record format:

srec_cat intel-file -intel -o srec-file
Pick any two formats that SRecord understands, it can convert between all of them. (Except the assembler,
BASIC, C and FPGA outputs which are write only.)

Motorola to Intel
Converting the other way is just as simple:

srec_cat srec-file -o intel-file -intel
The default format is Motorola S-Record format, so it does not need to be specified.

Different Shapes of the Same Format
It is regrettably common that some addle-pated EPROM programmers only implement a portion of the
specification used to represent their hex files. For example, some compilers produce “s19” Motorola data
(that is, S1 data records with S9 start records, 16 bit address fields) which would be OK except that some
blockhead EPROM programmers insist on “s37” Motorola data (that is, S3 data records with S7 start
records, 32 bit address fields).

It is possible to convert from one Motorola shape to another using the−Address-Lengthoption:
srec_cat short.srec -o long.srec --address-length=4

This command says to use four byte (32-bit) addresses on output.

This section also applies to Intel hex files, as they, too, have the ability to select from a variety of address
widths.

Line Lengths
From time to time you will come across a feeble-minded EPROM programmer that can’t cope with long
SRecord lines, they assume that there will only ever be 16 bytes of data per line, and barf when they see the
default 32 byte payloads thatsrec_cat(1) writes.

The Motorola S-record format definition permits up to 255 bytes of payload.All EPROM programmers
shouldhave sufficiently large buffers to cope with records this big. Few do.

Reference Manual SRecord 1

srec_examples(1) srec_examples(1)

The −line-length option may be used to specify the maximum line length (not including the newline) to be
used on output.For example, 16 byte payloads for Motorola hex

srec_cat long.srec -o short.s19 --line-length=46
The line length option interacts with the address length option, so some tinkering to optimize for your par-
ticular situation many be necessary.

Just the Data, Please
There are some bonehead EPROM programmers which can only cope with data records, and are unable to
cope with header records or execution start address records. If you have this problem, the−data-only
option can be used to suppress just about everything except the data. The actual effect depends on the for-
mat, of course, because some don’t hav ethese features anyway.

The−data-only option is short hand. There are four properties which may be−disabledor −enabledsepa-
rately. See thesrec_cat(1) man page for a description of the−disabledand−enabledoptions.

For example, your neanderthal EPROM programmer requires Motorola hex with header records (S0), but
without data count (S5) records. Not using the−data-only option has it barf on the data count record, but
using the−data-only option has it barf on the missing header record. Using the−disable=data-count
option would leave the header record intact while supressing the data count record.

Data Headers
The srec_cat(1) command always tries to pass through header records unchanged, whenever they are
present. Itev en tries preserve them across file format changes, to the limit the file formats are capable of.

If there is no file header record and you would like to add one, or you wish to override an existing file
header record, use the−header=string option. You will need to quote the string (to insulate it from the
shell) if it contains spaces or shell meta-characters.

Execution Start Addresses
Thesrec_cat(1) command always tries to pass through execution start addresses (typically occurring at the
end of the file), whenever they are present.They are adjusted along with the data records by the−offsetfil-
ter. It even tries preserve them across file format changes, to the limit the file formats are capable of.

If there is no execution start address record and you would like to add one, or you wish to override an exist-
ing execution start address record, use the−execution-start-address=numberoption.

Please note: the execution start address is a different concept than the first address in memory of your data.
Think of it as a “goto” address to be jumped to by the monitor when the hex load is complete. If you want
to change where your data starts in memory, use the−offsetfilter.

Fixing Checksums
Some embedded firmware developers are saddled with featherbrained tools which produce incorrect check-
sums, which the more vigilant models of EPROM programmer will not accept.

To fix the checksums on a file, use the−ignore-checksumsoption. For example:
srec_cat broken.srec --ignore-checksums -o fixed.srec

The checksums inbroken.srecare parsed (it is still and error if they are absent) but are not checked. The
resultingfixed.srecfile has correct checksums. The−ignore-checksumsoption only applies to input.

This option may be used on any file format which has checksums, including Intel hex.

Discovering Mystery Formats
See theWhat Format Is This? section, below, for how to discover and convert mystery EPROM load file
formats.

BINARY FILES
It is possible to convert to and from binary files.You can even mix binary files and other formats together
in the samesrec_cat(1) command.

Writing Binary Files
The simplest way of reading a hex file and converting it to a binary file looks like this:

srec_cat fred.hex -o fred.bin -binary
This reads the Mororola hex file fred.srecand writes it out to thefred.binas raw binary.

Reference Manual SRecord 2

srec_examples(1) srec_examples(1)

Note that the data is placed into the binary file at the byte offset specified by the addresses in the hex file. If
there are holes in the data they are filled with zero. This is, of course, common with linker output where the
code is placed starting at a particular place in memory. For example, when you have an image that starts at
0x100000, the first 1MB of the output binary file will be zero.

You can automatically cancel this offset using a command like
srec_cat fred.hex -offset - -minimum-addr fred.hex -o fred.bin

The above command works by offseting thefred.hexfile lower in memory by the least address in the
fred.hexfile’s data.

See also thesrec_binary(5) man page for additional detail.

Reading Binary Files
The simplest way of reading a binary file and converting it looks like this

srec_cat fred.bin -binary -o fred.srec
This reads the binary filefred.binand writes all of its data back out again as a Motorola S-Record file.

Often, this binary isn’t exactly where you want it in the address space, because it is assumed to reside at
address zero. If you need to move it around use the−offsetfilter.

srec_cat fred.bin -binary -offset 0x10000 -o fred.srec
You also need to avoid file “holes” which are filled with zero.You can use the−crop filter, of you could
use the−unfill filter if you done’t know exactly where the data is.

srec_cat fred.bin -binary -unfill 0x00 512 -o fred.srec
The above command removes runs of zero bytes that are 512 bytes long or longer. If your file contains
1GB of leading zero bytes, this is going to be slow, it may be better to use thedd(1) command to slice and
dice first.

JOINING FILES TOGETHER
Thesrec_catcommand takes its name from the UNIXcat(1) command, which is short for “catenate” or “to
join”. Thesrec_catcommand joins EPROM load files together.

All In One
Joining EPROM load files together into a single file is simple, just name as many files on the command line
as you need:

srec_cat infile1 infile2 -o outfile
This example is all Motorola S-Record files, because that’s the default format.You can have multiple for-
mats in the one command, andsrec_cat(1) will still work. You don’t even hav eto output the same format:

srec_cat infile1 -spectrum infile2 -needham \
-o outfile -signetics

These are all ancient formats, however it isn’t uncommon to have to mix and match Intel and Motorola for-
mats in the one project.

Filtering After Joining
There are times when you want to join two sets of data together, and then apply a filter to the joined result.
To do this you use parentheses.

srec_cat \
’(’ \

infile --exclude 0xFFF0 0x10000 \
--generate 0xFFF0 0xFFF8 --repeat-string ’Bananas ’ \

’)’ \
--b-e-length 0xFFF8 4 \
--b-e-checksum-neg 0xFFFC 4 4 \
-o outfile

The above example command catenates an input file (with the generated data area excluded) with a con-
stant string. This catenated input is then filtered to add a 4-byte length, and a 4-byte checksum.

Joining End-to-End
All too often the address ranges in the EPROM load files will overlap. You will get an error if they do. If
both files start from address zero, because each goes into a separate EPROM, you may need to use the

Reference Manual SRecord 3

srec_examples(1) srec_examples(1)

offset filter:
srec_cat infile1 \

infile2 -offset 0x80000 \
-o outfile

Sometimes you want the two files to follow each other exactly, but you don’t know the offset in advance:
srec_cat infile1 \

infile2 -offset -maximum-addr infile1 \
-o outfile

Notice that where the was a number (0x80000) before, there is now a calculation (−maximum-addrinfile1).
This is possible most places a number may be used (also −minimum-addr and −range).

CROPPING THE DAT A
It is possible to copy an EPROM load file, selecting addresses to keep and addresses to discard.

What To Keep
A common activity is to crop your data to match your EPROM location. Your linker may add other junk
that you are not interested in,e.g. at the RAM location.In this example, there is a 1MB EPROM at the
2MB boundary:

srec_cat infile -crop 0x200000 0x300000 \
-o outfile

The lower bound for all address ranges is inclusive, the upper bound is exclusive. If you subtract them, you
get the number of bytes.

Address Offset
Just possibly, you have a moronic EPROM programmer, and it barfs if the EPROM image doesn’t start at
zero. To find out just where isdoesstart in memory, use thesrec_inf(1) command:

$ srec_info example.srec
Format: Motorola S-Record
Header: extra-whizz tool chain linker
Execution Start Address: 0x00200000
Data: 0x200000 - 0x32AAEF
$

Rather than butcher the linker command file, just offset the addresses:
srec_cat infile -crop 0x200000 0x300000 -offset -0x200000 \

-o outfile
Note that the offset given is negative, it has the effect of subtracting that value from all addresses in the
input records, to form the output record addresses. In this case, shifting the image back to zero.

This example also demonstrates how the input filters may be chained together: first the crop and then the
offset, all in one command, without the need for temporary files.

If all you want to do is offest the data to start from address zero, this can be automated, so you don’t hav eto
know the minimum address in advance, by usingsrec_cat’s ability to calculate some things on the com-
mand line:

srec_cat infile -offset - -minimum infile \
-o outfile

Note the spaces either side of the minus sign, they are mandatory.

What To Throw Away
There are times when you need to exclude an small address range from an EPROM load file, rather than
wanting to keep a small address range. The−excludefilter may be used for this purpose.

For example, if you wish to exclude the address range where the serial number of an embedded device is
kept, say 0x20 bytes at 0x100, you would use a command like this:

srec_cat input.srec -exclude 0x100 0x120 -o output.srec
Theoutput.srecfile will have a hole in the data at the necessary locations.

Note that you can have both −crop and−excludeon the same command line, whichever works more natu-
rally for your situation.

Reference Manual SRecord 4

srec_examples(1) srec_examples(1)

Discontinuous Address Ranges
Address ranges don’t hav eto be a single range, you can build up an address range using more than a single
pair.

srec_cat infile -crop 0x100 0x200 0x1000 0x1200 \
-o outfile

This filter results in data from 0x100..0x1FF and data from 0x1000..0x1200 to pass through, the rest is
dropped. Thisis is more efficient than chaining a −crop and an −exclude filter together.

MOVING THINGS AROUND
It is also possible to change the address of data records, both forwards and backwards. Itis also possible
rearrange where data records are placed in memory.

Offset Filter
The −offset=numberfilter operates on the addresses of records.If the number is positive the addresses
move that many bytes higher in memory, neg ative values move lower.

srec_cat infile -crop 0x200000 0x300000 -offset -0x200000 \
-o outfile

The above example moves the 1MB block of data at 0x200000 down to zero (the offset isnegative) and dis-
cards the rest of the data.

Byte Swapping
There are times when the bytes in the data need to be swapped, converting between big-endian and little-
endian data usually.

srec_cat infile --byte-swap 4 -o outfile
This reverses bytes in 32 bit values (4 bytes). The default, if you don’t supply a width, is to reverse bytes in
16 bit values (2 bytes).You can actually use any weird value you like, although 64 bits (8 bytes) may be
useful one day.

Binary Output
You need to watch out for binary files on output, because the holes are filled with zeros.Your 100kB pro-
gram at the top of 32-bit addressed memory will make a 4GB file. Seesrec_binary(5) for how understand
and avoid this problem, usually with the −offset filter.

Splitting an Image
If you have a 16-bit data bus, but you are using two 8-bit EPROMs to hold your firmware, you can generate
the even and odd images by using the −SPlit filter. Assuming your firmware is in thefirmware.hexfile, use
the following:

srec_cat firmware.hex -split 2 0 -o firmware.even.hex
srec_cat firmware.hex -split 2 1 -o firmware.odd.hex

This will result in the two necessary EPROM images. Note that the output addresses are divided by the
split multiple, so if your EPROM images are at a particular offset (say 0x10000, in the following example),
you need to remove the offset, and then replace it...

srec_cat firmware.hex \
-offset -0x10000 -split 2 0 \
-offset 0x10000 -o firmware.even.hex

srec_cat firmware.hex \
-offset -0x10000 -split 2 1 \
-offset 0x10000 -o firmware.odd.hex

Note how the ability to apply multiple filters simplifies what would otherwise be a much longer script.

Striping
A second use for the −SPlit filter is memory striping. In this example, the hardware requires that 512-byte
blocks alternate between 4 EPROMs. Generatingthe 4 images would be done as follows:

srec_cat firmware.hex -split 0x800 0x000 0x200 -o firmware.0.hex
srec_cat firmware.hex -split 0x800 0x200 0x200 -o firmware.1.hex
srec_cat firmware.hex -split 0x800 0x400 0x200 -o firmware.2.hex
srec_cat firmware.hex -split 0x800 0x600 0x200 -o firmware.3.hex

Reference Manual SRecord 5

srec_examples(1) srec_examples(1)

Unspliting Images
The unsplit filter may be used to reverse the effects of the split filter. Note that the address range is
expanded leaving holes between the stripes.By using all the stripes, the complete input is reassembled,
without any holes.

srec_cat -o firmware.hex \
firmware.even.hex -unsplit 2 0 \
firmware.odd.hex -unsplit 2 1

The above example reverses the previous 16-bit data bus example,.

FILLING THE BLANKS
Often EPROM load files will have “holes” in them, places where the compiler and linker did not put any-
thing. For some purposes this is OK, and for other purposes something has to be done about the holes.

The Fill Filter
It is possible to fill the blanks where your data does not lie. The simplest example of this fills the entire
EPROM:

srec_cat infile -fill 0x00 0x200000 0x300000 -o outfile
This example fills the holes, if any, with zeros.You must specify a range − with a 32-bit address space, fill-
ing everything generateshugeload files.

If you only want to fill the gaps in your data, and don’t want to fill the entire EPROM, try:
srec_cat infile -fill 0x00 -over infile -o outfile

This example demonstrates the fact that wherever an address range may be specified, the−over and
−within options may be used.

Unfilling the Blanks
It is common to need to “unfill” an EPROM image after you read it out of a chip.Usually, it will have had
all the holes filled with 0xFF (areas of the EPROM you don’t program show as 0xFF when you read them
back).

To get rid of all the 0xFF bytes in the data, use this filter:
srec_cat infile -unfill 0xFF -o outfile

This will get rid ofall the 0xFF bytes, including the ones you actually wanted in there. There are two ways
to deal with this. First, you can specify a minimum run length to the un-fill:

srec_cat infile -unfill 0xFF 5 -o outfile
This says that runs of 1 to 4 bytes of 0xFF are OK, and that a hole should only be created for runs of 5 or
more 0xFF bytes in a row. The second method is to re-fill over the intermediate gaps:

srec_cat outfile -fill 0xFF -over outfile \
-o outfile2

Which method you choose depends on your needs, and the shape of the data in your EPROM. You may
need to combine both techniques.

Address Range Padding
Some data formats are 16 bits wide, and automatically fill with 0xFF bytes if it is necessary to fill out the
other half of a word which is not in the data. If you need to fill with a different value, you can use a com-
mand like this:

srec_cat infile -fill 0x0A \
-within infile -range-padding 2 \
-o outfile

This gives the fill filter an address range calculated from details of the input file.The address range is all
the address ranges covered by data in theinfile, extended downwards (if necessary) at the start of each sub-
range to a 2 byte multiple and extended upwards (if necessary) at the end of each sub-range to a 2 byte mul-
tiple. This also works for larger multiples, like 1kB page boundaries of flash chips. This address range
padding works anywhere an address range is required.

Fill with Copyright
It is possible to fill unused portions of your EPROM with a repeating copyright message.Anyone trying to
reverse engineer your EPROMs is going to see the copyright notice in their hex editor.

Reference Manual SRecord 6

srec_examples(1) srec_examples(1)

This is accomplished with two input sources, one from a data file, and one which is generated on-the-fly.
srec_cat infile \

-generate ’(’ 0 0x100000 -minus -within infile ’)’ \
-repeat-string ’Copyright (C) 1812 Tchaikovsky. ’ \

-o outfile
Notice how the address range for the data generation: it takes the address range of your EPROM, in this
case 1MB starting from 0, and subtracts from it the address ranges used by the input file.

If you want to script this with the current year (because 1812 is a bit out of date) use the shell’s output sub-
stitution (back ticks) ability:

srec_cat infile \
-generate ’(’ 0 0x100000 -minus -within infile ’)’ \

-repeat-string "Copyright (C) ‘date +%Y‘ Tchaikovsky. " \
-o outfile

The string specified is repeated over and over again, until it has filled all the holes.

Obfuscating with Noise
Sometimes you want to fill your EPROM images with noise, to conceal where the real data stops and starts.
You can do this with the−random-fill filter.

srec_cat infile -random-fill 0x200000 0x300000 \
-o outfile

It works just like the−fill filter, but uses random numbers instead of a constant byte value.

Fill With 16-bit Words
When filling the image with a constant byte value doesn’t work, and you need a constant 16-bit word value
instead, use the−repeat-datagenerator, which takes an arbitrarily long sequence of bytes to use as the fill
pattern:

srec_cat infile \
-generator ’(’ 0x200000 0x300000 -minus -within infile ’)’ \

-repeat-data 0x1B 0x08 \
-o outfile

Notice how the generator’s address range once again avoids the address ranges occupied by theinfile’s data.
You hav eto get the endian-ness right yourself.

INSERTING CONSTANT DAT A
From time to time you will want to insert constant data, or data not produced by your compiler or assem-
bler, into your EPROM load images.

Binary Means Literal
One simple way is to have the desired information in a file.To insert the file’s contents literally, with no
format interpretation, use thebinary input format:

srec_cat infile --binary -o outfile
It will probably be necessary to use andoffsetfilter to move the data to where you actually want it within
the image:

srec_cat infile --binary --offset 0x1234 -o outfile
It is also possible to use the standard input as a data source, which lends itself to being scripted.For exam-
ple, to insert the current data and time into an EPROM load file, you could use a pipe:

date | srec_cat - -bin --offset 0xFFE3 -o outfile
The special file name “-” means to read from the standard input.The output of thedate command is
always 29 characters long, and the offset shown will place it at the top of a 64KB EPROM image.

Repeating Once
The Fill with Copyright section, above, shows how to repeat a string over and over. We can use a single
repeat to insert a string just once.

srec_cat -generate 0xFFE3 0x10000 -repeat-string "‘date‘" \
-o outfile

Notice how the address range for the data generation exactly matches the length of thedate(1) output size.
You can, of course, add your input file to the above srec_cat(1) command to catenate your EPROM image

Reference Manual SRecord 7

srec_examples(1) srec_examples(1)

together with the date and time.

DATA ABOUT THE DAT A
It is possible to add a variety of data about the data to the output.

Checksums
The−big-endian-checksum-negative filter may be used to sum the data, and then insert the negative of the
sum into the data. This has the effect of summing to zero when the checksum itself is summed across, pro-
vided the sum width matches the inserted value width.

srec_cat infile \
--crop 0 0xFFFFFC \
--random-fill 0 0xFFFFFC \
--b-e-checksum-neg 0xFFFFFC 4 4 \

-o outfile
In this example, we have an EPROM in the lowest megabyte of memory. The −crop filter ensures we are
only summing the data within the EPROM, and not anywhere else. The −random-fill filter fills any holes
left in the data with random values. Finally, the −b-e-checksum-neg filter inserts a 32 bit (4 byte) checksum
in big-endian format in the last 4 bytes of the EPROM image. Naturally, there is a little endian version of
this filter as well.

Your embedded code can check the EPROM using C code similar to the following:
unsigned long *begin = (unsigned long *)0;
unsigned long *end = (unsigned long *)0x100000;
unsigned long sum = 0;
while (begin < end)

sum += *begin++;
if (sum != 0)
{

Oops
}

The −big-endian-checksum-bitnot filter is similar, except that summing over the checksum should yield a
value of all-one-bits (-1).For example, using shorts rather than longs:

srec_cat infile \
--crop 0 0xFFFFFE \
--fill 0xCC 0x00000 0xFFFFFE \
--b-e-checksum-neg 0xFFFFFE 2 2 \

-o outfile
Assuming you chose the correct endian-ness filter, your embedded code can check the EPROM using C
code similar to the following:

unsigned short *begin = (unsigned long *)0;
unsigned short *end = (unsigned long *)0x100000;
unsigned short sum = 0;
while (begin < end)

sum += *begin++;
if (sum != 0xFFFF)
{

Oops
}

There is also a −b-e-checksum-positive filter, and a matching little-endian filter, which inserts the simple
sum, and which would be checked in C using an equality test.

srec_cat infile \
--crop 0 0xFFFFFF \
--fill 0x00 0x00000 0xFFFFFF \
--b-e-checksum-neg 0xFFFFFF 1 1 \

-o outfile

Reference Manual SRecord 8

srec_examples(1) srec_examples(1)

Assuming you chose the correct endian-ness filter, your embedded code can check the EPROM using C
code similar to the following:

unsigned char *begin = (unsigned long *)0;
unsigned char *end = (unsigned long *)0xFFFFF;
unsigned char sum = 0;
while (begin < end)

sum += *begin++;
if (sum != *end)
{

Oops
}

In the 8-bit case, it doesn’t matter whether you use the big-endian or little-endian filter.

You can look at the checksum of your data, by using the “hex-dump” output format.
srec_cat infile \

--crop 0 0x10000 \
--fill 0xFF 0x0000 0x10000 \
--b-e-checksum-neg 0x10000 4 \
--crop 0x10000 0x10004 \

-o - --hex-dump
This command reads in the file, checksums the data and places the checksum at 0x10000, crops the result to
contain only the checksum, and then prints the checksum on the standard output in a classical hexadecimal
dump format.

Cyclic Redundancy Checks
The simple additive checksums have a number of theoretical limitations, to do with errors they can and
can’t detect. TheCRC methods have fewer problems.

srec_cat infile \
--crop 0 0xFFFFFC \
--fill 0x00 0x00000 0xFFFFFC \
--b-e-crc32 0xFFFFFC \

-o outfile
In the above example, we have an EPROM in the lowest megabyte of memory. The −crop filter ensures we
are only summing the data within the EPROM, and not anywhere else. The −fill filter fills any holes left in
the data.Finally, the −b-e-checksum-neg filter inserts a 32 bit (4 byte) checksum in big-endian format in
the last 4 bytes of the EPROM image. Naturally, there is a little endian version of this filter as well.

The checksum is calculated using the industry standard 32-bit CRC. Because SRecord is open source, you
can always read the source code to see how it works. Thereare many non-GPL version of this code avail-
able on the Internet, and suitable for embedding in proprietary firmware.

There is also a 16-bit CRC available.
srec_cat infile \

--crop 0 0xFFFFFE \
--fill 0x00 0x00000 0xFFFFFE \
--b-e-crc16 0xFFFFFE \

-o outfile

The checksum is calculated using the CCITT formula.Because SRecord is open source, you can always
read the source code to see how it works. Thereare many non-GPL version of this code available on the
Internet, and suitable for embedding in proprietary firmware.

You can look at the CRC of your data, by using the “hex-dump” output format.
srec_cat infile \

--crop 0 0x10000 \
--fill 0xFF 0x0000 0x10000 \
--b-e-crc16 0x10000 \
--crop 0x10000 0x10002 \

Reference Manual SRecord 9

srec_examples(1) srec_examples(1)

-o - --hex-dump
This command reads in the file, calculates the CRC of the data and places the CRC at 0x10000, crops the
result to contain only the CRC, and then prints the checksum on the standard output in a classical hexadeci-
mal dump format.

Where Am I?
There are several properties of you EPROM image that you may wish to insert into the data.

srec_cat infile --b-e-minimum 0xFFFFFE 2 -o outfile
The above example inserts the minimum address of the data (low water) into the data. This includes the
minimum itself. If the data already contains bytes at the given address, you need to use an exclude filter.
The value will be written with the most significant byte first.The number of bytes defaults to 4. There is
also a little-endian variant, and two variants called “exclusive” that do not include the minimum itself.

srec_cat infile --b-e-maximum 0xFFFFFE 2 -o outfile
The above example inserts the maximum address of the data (high water + 1, just like address ranges) into
the data. This includes the maximum itself.If the data already contains bytes at the given address, you
need to use an exclude filter. The value will be written with the most significant byte first. The number of
bytes defaults to 4. There is also a little-endian variant, and two variants called “exclusive” that do not
include the maximum itself.

srec_cat infile --b-e-length 0xFFFFFE 2 -o outfile
The above example inserts the length of the data (high water+ 1 - low water) into the data. This includes
the length itself.If the data already contains bytes at the length location, you need to use an exclude filter.
The value will be written with the most significant byte first.The number of bytes defaults to 4. There is
also a little-endian variant, and two variants called “exclusive” that do not include the length itself.

What Format Is This?
You can obtain a variety of information about an EPROM load file by using thesrec_info(1) command.For
example:

$ srec_info example.srec
Format: Motorola S-Record
Header: "http://srecord.sourceforge.net/"
Execution Start Address: 00000000
Data: 0000 - 0122

0456 - 0FFF
$

This example show that the file is a Motorola S-Record. The text in the file header is printed, along with
the execution start address. The final section shows the address ranges containing data (the upper bound of
each subrange isinclusive, rather than theexclusive form used on the command line.

$ srec_info some-weird-file.hex --guess
Format: Signetics
Data: 0000 - 0122

0456 - 0FFF
$

The above example guesses the EPROM load file format. It isn’t infallible but it usually gets it right.You
can use−guessanywhere you would give an explicit format, but it tends to be slower and not recom-
mended.

MANGLING THE D AT A
It is possible to change the values of the data bytes in several ways.

srec_cat infile --and 0xF0 -o outfile
The above example performs a bit-wise AND of the data bytes with the 0xF0 mask.The addresses of
records are unchanged.I can’t actually think of a use for this filter.

srec_cat infile --or 0x0F -o outfile
The above example performs a bit-wise OR of the data bytes with the 0x0F bits. The addresses of records
are unchanged.I can’t actually think of a use for this filter.

srec_cat infile --xor 0xA5 -o outfile
The above example performs a bit-wise exclusive OR of the data bytes with the 0xA5 bits.The addresses

Reference Manual SRecord 10

srec_examples(1) srec_examples(1)

of records are unchanged.You could use this to obfuscate the contents of your EPROM.
srec_cat infile --not -o outfile

The above example performs a bit-wise NOT of the data bytes. The addresses of records are unchanged.
Security by obscurity?

COPYRIGHT
srec_catversion 1.47
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Peter Miller

The srec_catprogram comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cat -VER-
Sion License’ command. Thisis free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’srec_cat -VERSion License’ command.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 11

