srec_aamples(1) srec xamples(1)

NAME
srec_examples — examples ofahim use SRecord

DESCRIPTION
Thesrec_catcommand is very peerful, due to the ability to combine the the input filters in almost unlim-

ited ways. Thismanual page describes avfef them.

This manual page describesahto use the arious input files, input filters and input generators. But these
are only examples, for more complete details, seertte inpufl) manual page.

The Commands Lines Ae Too Long
If you are marooned on an operating system with absurdly short command line length limits, some of the
commands which follw may be too long.You can get around this handicap by placing your command line
in a file, sayfred.txt and then tellrec_cafl) to read this file for the rest of its command lineg likis
srec_cat @red.txt
This also has the adatage of allowing comments,vegal lines and een indenting to mak it more clear
Comments start at &™"and extend to the end of the line. Blank lines are ignored.

Of course, you couldabys upgrade to Linux, which has been sucking lessvier 17 years nuv.

Your Examples Wanted
If you hare a ¢ever way of using SRecord, or W lved a difficult problem with SRecord, you could con-
tribute to this manual page, making it more useful f@rymne. Sendour contribution in an email to the
email address at the end of this manual page.

CONVERTING FILE FORMATS
The simplest of the thingsrec_cafl) can do is corert from one EPROM file format to anothelPlease
keep in mind, as you read this section, that you can do mfthese things simultaneously in one com-
mand. Thg are only broken out separately to neghem easier to understand.

Intel to Motorola
One of the simplest examples is eenting files from Intel he format to Motorola S-Record format:
srec_cat intel-file -i ntel -o srec-file
Pick ary two formats that SRecord understands, it caivadhetween all of them. (Except the assembler
BASIC, C and FPGA outputs which are write only.)

Motorola to Intel
Corverting the other way is just as simple:
srec_cat srec-file - o intel-file -i nt el
The default format is Motorola S-Record format, so it does not need to be specified.

Different Shapes of the Same Format
It is regrettably common that some addle-pated EPROM programmers only implement a portion of the
specification used to represent theix fitges. For example, some compilers produce “s19” Motorola data
(that is, S1 data records with S9 start records, 16 bit address fields) which would be OK except that some
blockhead EPROM programmers insist on “s37” Motorola data (that is, S3 data records with S7 start
records, 32 bit address fields).

It is possible to carert from one Motorola shape to another using-tAddress-Lengthoption:
srec_cat short.srec -o long.srec --address-|ength=4
This command says to use four byte (32-bit) addresses on output.

This section also applies to Intelxiiles, as thg too, hae the ability to select from a variety of address
widths.

Line Lengths
From time to time you will come across a feeble-minded EPROM programmer thiatagaa'with long
SRecord lines, thyeassume that there will onlyer be 16 lytes of data per line, and barf whenytisee the
default 32 byte payloads thetec_cafl) writes.

The Motorola S-record format definition permits up to 255 bytes of paylahld=EPROM programmers
shouldhave sufficiently large buffers to cope with records this bigwkem.

Reference Manual SRecord 1

srec_aamples(1) srec xamples(1)

The -line-length option may be used to specify the maximum line length (not including the newline) to be
used on outputFor example, 16 byte payloads for Motorola hex

srec_cat long.srec -o short.sl19 --1line-Iength=46
The line length option interacts with the address length option, so some tinkering to optimize for your par
ticular situation maypbe recessary.

Just the Data, Please
There are some bonehead EPROM programmers which can only cope with data records, and are unable to
cope with header records oxeeution start address records. If yowéahis problem, the-data-only
option can be used to suppress just abeerything except the data. The actudkef depends on the for
mat, of course, because some tlbavethese features anyway.

The—data-only option is short hand. There are four properties which maydisabledor —enabledsepa-
rately See thesrec_cafl) man page for a description of thdisabledand—enabledoptions.

For example, your neanderthal EPROM programmer requires Motoralavitie header records (SO)utb
without data count (S5) records. Not using tiiata-only option has it barf on the data count recont, b
using the—data-only option has it barf on the missing header record. Using-tlisable=data-count
option would lese the header record intact while supressing the data count record.

Data Headers
The srec_cafl) command abays tries to pass through header records unchanged, venehey are
present. leven tries preserg them across file format changes, to the limit the file formats are capable of.

If there is no file header record and you woule Itk ald one, or you wish toverride an existing file
header record, use thdeader=string option. You will need to quote the string (to insulate it from the
shell) if it contains spaces or shell meta-characters.

Execution Start Addresses
Thesrec_cafl) command abays tries to pass througlxeeution start addresses (typically occurring at the
end of the file), whener they are present.They are adjusted along with the data records by-tbiset fil-
ter. It even tries preserg them across file format changes, to the limit the file formats are capable of.

If there is no recution start address record and yooud like to ald one, or you wish toverride an aist-
ing execution start address record, use tegecution-start-addressnumberoption.

Please note: thexecution start address is a different concept than the first address in memory of your data.
Think of it as a “goto” address to be jumped to by the monitor when thimaeé is complete. If you ant
to change where your data starts in memuasg the-offsetfilter.

Fixing Checksums
Some embedded firmwareviopers are saddled with featherbrained tools which produce incorrect check-
sums, which the more vigilant models of EPROM programmer will not accept.

To fix the checksums on a file, use thignore-checksumsption. For example:

srec_cat broken.srec --ignore-checksunms -0 fixed. srec
The checksums ibroken.sreare parsed (it is still and error if there absent) but are not check The
resultingfixed.sredile has correct checksums. Thignore-checksumsption only applies to input.

This option may be used onyafile format which has checksums, including Intel hex.

Discovering Mystery Formats
See theNhat Format Is This? section, bela, for how to discover and comwvert mystery EPROM load file
formats.

BINARY FILES
It is possible to corert to and from binary filesYou can ezen mix binary files and other formats together
in the samesrec_cafl) command.

Writing Binary Files
The simplest way of reading axtéle and cowerting it to a binary file looks li& this:

srec_cat fred.hex -o fred.bin -binary
This reads the Mororola kdile fred.srecand writes it out to th&red.binas rav binary.

Reference Manual SRecord 2

srec_aamples(1) srec xamples(1)

Note that the data is placed into the binary file at the bfgetadpecified by the addresses in thefie. If
there are holes in the dataytaee filled with zero. This is, of course, common with linker output where the
code is placed starting at a particular place in memigoy example, when you ve an image that starts at
0x100000, the first 1MB of the output binary file will be zero.

You can automatically cancel this offset using a command like

srec_cat fred. hex -offset - -mninmumaddr fred.hex -o fred.bin
The abee ommand works by offseting thieed.hexfile lower in memory by the least address in the
fred.hexfile’s data.

See also therec_hinary5) man page for additional detail.

Reading Binary Files
The simplest way of reading a binary file andwepting it looks like this
srec_cat fred.bin -binary -o fred.srec
This reads the binary fifeed.binand writes all of its data back out again as a Motorola S-Record file.

Often, this binary istt'exactly where you ant it in the address space, because it is assumed to reside at
address zero. If you need to weat around use theoffsetfilter.
srec_cat fred.bin -binary -offset 0x10000 -o fred. srec
You dso need toaid file “holes” which are filled with zeroYou can use the-crop filter, of you could
use the-unfill filter if you donet know exactly where the data is.
srec_cat fred.bin -binary -unfill Ox00 512 -0 fred. srec
The abee command remees runs of zero bytes that are 512 bytes long or longfeyour file contains
1GB of leading zero bytes, this is going to benslib may be better to use thgl(1) command to slice and
dice first.

JOINING FILES TOGETHER
Thesrec_cattommand takes its name from the UNdX{(1) command, which is short for “catenate” or “to
join”. Thesrec_cattommand joins EPROM load files together.

All In One

Joining EPROM load files together into a single file is simple, just name asfitearon the command line
as you need:

srec_cat infilel infile2 - o outfile
This example is all Motorola S-Record files, becausestitad’ default format.You can hae nultiple for-
mats in the one command, asréc_cafl) will still work. You dont even haveto output the same format:

srec_cat infilel - spectrum infile2 - needham \

-0 outfile -si gnetics

These are all ancient formats wever it isn't uncommon to hee o mix and match Intel and Motorola for
mats in the one project.

Filtering After Joining
There are times when you want to joiroteets of data togetheand then apply a filter to the joined result.
To do this you use parentheses.
srec_cat \
e \
infile - - excl ude OxFFFO 0x10000 \
--generate OXFFFO OxFFF8 --repeat-string 'Bananas

"\

'y \
--b-e-length OxFFF8 4 \
--b-e-checksum neg OXFFFC 4 4 \

- 0 outfile
The abee example command catenates an input file (with the generated data area excluded) with a con-

stant string. This catenated input is then filtered to add a 4-byte length, and a 4-byte checksum.

Joining End-to-End
All too often the address ranges in the EPROM load files walllap. You will get an error if thedo. If
both files start from address zero, because each goes into a sepai@id, R may need to use the

Reference Manual SRecord 3

srec_aamples(1) srec xamples(1)

offset filter:
srec_cat infilel \
infile2 - of f set 0x80000 \
- 0 outfile
Sometimes you want the dwiles to follov each other exactjyout you dont know the offset in advance:
srec_cat infilel \
infile2 - of f set - maxi mum addr infilel \
- 0 outfile
Notice that where the was a number (0x80000) before, thergvia alculation (-maximum-addnfilel).
This is possible most places a number may be used (also —minimum-addr and —range).

CROPPING THE DATA
It is possible to copan BPROM load file, selecting addresses to keep and addresses to discard.

What To Keep
A common activity is to crop your data to match your BERRIocation. Your linker may add other junk
that you are not interested ia,g. at the RAM location.In this example, there is a 1MB EPROM at the
2MB boundary:
srec_cat infile -crop 0x200000 0x300000 \

- 0 outfile
The lower bound for all address ranges is inekighe upper bound isxelusive. If you subtract them, you
get the number of bytes.

Address Offset

Just possiblyyou hare a noronic EPROM programmeand it barfs if the EPRM image doesn’start at
zero. D find out just where idoesstart in memoryuse thesrec_inf1) command:

$ srec_info exanple.srec

Format: Mdtorola S-Record

Header: extra-whizz tool chain |inker

Execution Start Address: 0x00200000

Dat a: 0x200000 - Ox32AAEF

$
Rather than butcher the linker command file, just offset the addresses:

srec_cat infile -crop 0x200000 0x300000 -of fset -0x200000 \

- 0 outfile

Note that the offset gén is negative it has the effect of subtracting that value from all addresses in the
input records, to form the output record addresses. In this case, shifting the image back to zero.

This example also demonstratesvhibie input filters may be chained together: first the crop and then the
offset, all in one command, without the need for temporary files.

If all you want to do is dést the data to start from address zero, this can be automated, so ydadeio’
know the minimum address in advance, by ussngc_cak ability to calculate some things on the com-

mand line:
srec_cat infile -of fset - -m ni num infile \
- 0 outfile
Note the spaces either side of the minus sigy,dreemandatory.
What To Throw Away

There are times when you need to exclude an small address range fromQ@ &R file, rather than
wanting to keep a small address range. Faecludefilter may be used for this purpose.

For example, if you wish to exclude the address range where the serial number of an embedded de
kept, say 0x20 bytes at 0x100, you would use a commaedhiik

srec_cat input.srec -exclude 0x100 0x120 -0 output.srec
Theoutput.sredile will have a tole in the data at the necessary locations.

Note that you can la both —crop and-excludeon the same command line, whigheworks more natu-
rally for your situation.

Reference Manual SRecord 4

srec_aamples(1) srec xamples(1)

Discontinuous Address Ranges
Address ranges ddrtiaveto be a single range, you can build up an address range using more than a single
pair.
srec_cat infile -crop 0x100 0x200 0x1000 0x1200 \
- 0 outfile
This filter results in data from 0x100..0x1FF and data from 0x1000..0x1200 to pass through, the rest is
dropped. Thiss is more efficient than chaining a —crop and an —exclude filter together.

MOVING THINGS AROUND
It is also possible to change the address of data records, botirderand backards. Itis also possible
rearrange where data records are placed in memory.

Offset Filter
The -offset=numberfilter operates on the addresses of recoifishe number is posite the addresses
move that many bytes higher in memoryegdive values mee lower.
srec_cat infile -crop 0x200000 0x300000 -of fset -0x200000 \
- 0 outfile
The abee example mwoes the 1MB block of data at 0x200000 down to zero (tlisedfisnegativg and dis-
cards the rest of the data.

Byte Swapping
There are times when the bytes in the data need to dygpsd, coverting between big-endian and little-
endian data usually.
srec_cat infile --byte-swap 4 -0 outfile
This reverses bytes in 32 bit values (4 bytes). The default, if youtdapply a width, is to neerse bytes in
16 bit values (2 bytes)You can actually use gnweird value you like, although 64 bits (8 bytes) may be
useful one day.

Binary Output
You need to vatch out for binary files on output, because the holes are filled with 2ésas.100kB pro-
gram at the top of 32-bit addressed memory will maldGB file. Seesrec_binarys) for hav understand
and &oid this problem, usually with the —offset filter.

Splitting an Image
If you have a B-bit data bus, but you are usingot@&hbit EPROMSs to hold your firmware, you can generate
the even and odd images by using the —SPIlit filt&kssuming your firmare is in thdirmware hexfile, use
the following:
srec_cat firmmvare. hex -split 2 0 -o firmare. even. hex
srec_cat firmmvare. hex -split 2 1 -o firmware. odd. hex
This will result in the tw necessary EPROM images. Note that the output addresses are divided by the
split multiple, so if your EPROM images are at a particultsedfsay 0x10000, in the following@mple),
you need to reme the offset, and then replace it...
srec_cat firmare. hex \
-of fset -0x10000 -split 2 0\
-of fset 0x10000 -o firnmnare. even. hex
srec_cat firmare. hex \
-of fset -0x10000 -split 2 1\
-of fset 0x10000 -o firmuare. odd. hex
Note hav the ability to apply multiple filters simplifies what would otherwise be a much longer script.

Striping
A second use for the —SPIlit filter is memory striping. In this example, the hardware requires that 512-byte
blocks alternate between 4 EBRs. Generatinghe 4 images would be done as follows:
srec_cat firmmvare. hex -split 0x800 0x000 0x200 -o firnmware. 0. hex
srec_cat firmmvare. hex -split 0x800 0x200 0x200 -o firnmnare. 1. hex
srec_cat firmmvare. hex -split 0x800 0x400 0x200 -o firnmnare. 2. hex
srec_cat firmmvare. hex -split 0x800 0x600 0x200 -o firnmware. 3. hex

Reference Manual SRecord 5

srec_aamples(1) srec xamples(1)

Unspliting Images
The unsplit filter may be used toveese the effects of the split filteNote that the address range is
expanded leaving holes between the stripBg. using all the stripes, the complete input is reassembled,
without ary holes.
srec_cat -o firmware. hex \

firmvare. even. hex -unsplit 2 0\

firmvare.odd. hex -unsplit 2 1
The abee example reerses the previous 16-bit data bus example,.

FILLING THE BLANKS
Often EPROM load files will hee “holes” in them, places where the compiler and linker did not put an
thing. For some purposes this is OK, and for other purposes something has to be done about the holes.

The Fill Filter
It is possible to fill the blanks where your data does not lie. The simplest example of this fills the entire
EPROM:
srec_cat infile -fill 0x00 0x200000 0x300000 -o outfile
This example fills the holes, if grwith zeros. You must specify a range — with a 32-bit address space, fill-
ing everything generatebugeload files.

If you only want to fill the gaps in your data, and davant to fill the entire EPROM, try:

srec_cat infile -fill 0x00 -over infile - o outfile
This example demonstrates the fact that wreeran aldress range may be specified, traver and
—within options may be used.

Unfilling the Blanks
It is common to need to “unfill” an EPROM image after you read it out of a ¢¥spally; it will have had
all the holes filled with OxFF (areas of the EPROM you tiprogram shw as &FF when you read them
back).

To get rid of all the OXFF bytes in the data, use this filter:

srec_cat infile -unfill OxFF -o outfile
This will get rid ofall the OxFF bytes, including the ones you actuakyted in there. There aredways
to deal with this. First, you can specify a minimum run length to the un-fill:

srec_cat infile -unfill OxFF 5 -o outfile
This says that runs of 1 to 4 bytes of OxFF are OK, and that a hole should only be created for runs of 5 or
more OxFF bytes in awo The second method is to re-fikey the intermediate gaps:

srec_cat outfile -fill OxFF -over outfile \

- 0 outfile2

Which method you choose depends on your needs, and the shape of the data in @Mr FBR may
need to combine both techniques.

Address Range Padding
Some data formats are 16 bits wide, and automatically fill with OxFF bytes if it is necessary to fill out the
other half of a wrd which is not in the data. If you need to fill with a different value, you can use a com-

mand lilke this:
srec_cat infile -fill OxO0A \
-wi t hi n infile - range- paddi ng 2 \
- 0 outfile

This gies the fill filter an address range calculated from details of the inputThe. address range is all

the address rangesweped by data in thafile, extended dennwards (if necessary) at the start of each sub-
range to a 2 byte multiple and extended apls (if necessary) at the end of each sub-range to a 2 byte mul-
tiple. Thisalso works for lager multiples, lile kB page boundaries of flash chips. This address range
padding works anywhere an address range is required.

Fill with Copyright
It is possible to fill unused portions of your EPROM with a repeating copyright messagene trying to
reverse engineer your EPROMs is going to see the copyright notice in theidiba.

Reference Manual SRecord 6

srec_aamples(1) srec xamples(1)

This is accomplished with minput sources, one from a data file, and one which is generated on-the-fly.
srec_cat infile \
-generate ' (' 0 0x100000 -minus -wi thin infile ")’ \
-repeat-string 'Copyright (C 1812 Tchai kovsky. ' \
- 0 outfile
Notice hav the address range for the data generation: it takes the address range of your EPROM, in this
case 1MB starting from 0, and subtracts from it the address ranges used by the input file.

If you want to script this with the current year (because 1812 is a bit out of date) use thexgpeli’sub-
stitution (back ticks) ability:
srec_cat infile \
-generate ' (' 0 0x100000 -minus -within infile ")’ \
-repeat-string "Copyright (C) ‘date +%" Tchai kovsky. " \
- 0 outfile

The string specified is repeatetoand over agan, until it has filled all the holes.

Obfuscating with Noise
Sometimes you want to fill your EPROM images with noise, to conceal where the real data stops and starts.
You can do this with therandom-fill filter.
srec_cat infile -randomfill 0x200000 0x300000 \
- 0 outfile
It works just like the —fill filter, but uses random numbers instead of a constant byte value.

Fill With 16-bit Words
When filling the image with a constant byuwe doesr’'work, and you need a constant 16-bit woatlie
instead, use therepeat-datageneratgrwhich takes an arbitrarily long sequence of bytes to use as the fill
pattern:
srec_cat infile \
-generator ' (' 0x200000 0x300000 -mi nus -within infile ")’ \
-repeat-data Ox1B 0x08 \

- 0 outfile
Notice hav the generatos aldress range once agaioals the address ranges occupied byirtfile's data.
You haveto get the endian-ness right yourself.

INSERTING CONSTANT DATA
From time to time you will want to insert constant data, or data not produced by your compiler or assem-
bler, into your EPROM load images.

Binary Means Literal

One simple way is to ke the desired information in a fileTo insert the files contents literally with no
format interpretation, use thénary input format:

srec_cat infile --binary -o outfile
It will probably be necessary to use asftsetfilter to move the data to where you actually want it within
the image:

srec_cat infile --binary --offset 0x1234 -o outfile
It is also possible to use the standard input as a data source, which lends itself to being Boripxah-
ple, to insert the current data and time into an EPROM load file, you could use a pipe:

date | srec_cat - -bin --offset OXFFE3 -o0 outfile
The special file name-" means to read from the standard inplihe output of thedate command is
always 29 characters long, and the offset shown will place it at the top of a 64KB EPROM image.

Repeating Once
The Fill with Copyright section, abee, shows hav to repeat a stringwer and over. We can use a single
repeat to insert a string just once.
srec_cat -generate OXxFFE3 0x10000 -repeat-string "‘date'" \
- 0 outfile
Notice hav the address range for the data generation exactly matches the lengtdaitheoutput size.
You can, of course, add your input file to the absrec_cafl) command to catenate your EPROM image

Reference Manual SRecord 7

srec_aamples(1) srec xamples(1)

together with the date and time.

DATA ABOUT THE DATA
It is possible to add a variety of data about the data to the output.

Checksums
The —big-endian-checksum-negatie filter may be used to sum the data, and then insert gaived the
sum into the data. This has the effect of summing to zero when the checksum itself is summed across, pro-
vided the sum width matches the inserted value width.
srec_cat infile \

--crop 0 OXFFFFFC \

--randomfill O OxFFFFFC \

--b-e-checksum neg OXFFFFFC 4 4 \

- 0 outfile

In this example, we lva& an EPROM in the lavest mgabyte of memory The —crop filter ensures we are
only summing the data within the EPROM, and notvarere else. The —random-fill filter fills ymoles
left in the data with randomalues. Finallythe —b-e-checksum-gdilter inserts a 32 bit (4 byte) checksum
in big-endian format in the last 4 bytes of the ERRRimage. Naturally, there is a little endian version of
this filter as well.

Your embedded code can check the EPROM using C code similar to the following:
unsi gned | ong *begin = (unsigned |ong *)O0;
unsi gned long *end = (unsigned | ong *)0x100000;
unsi gned | ong sum = O;
whi l e (begin < end)
sum += *begi n++;
if (sum!= 0)

{
}

The —big-endian-checksum-bitnot filter is similexcept that summingwer the checksum should yield a
value of all-one-bits (-1) For example, using shorts rather than longs:
srec_cat infile \
--crop 0 OXFFFFFE \
--fill OxCC 0x00000 OxFFFFFE \
--b-e-checksum neg OXFFFFFE 2 2 \
- 0 outfile
Assuming you chose the correct endian-ness,fjtur embedded code can check the BRRusing C
code similar to the following:
unsi gned short *begin = (unsigned |ong *)O0;
unsi gned short *end = (unsigned | ong *)0x100000;
unsi gned short sum = O;
whi I e (begin < end)
sum += *begi n++;
if (sum!= OxFFFF)
{

}

There is also a —b-e-checksum-pasitfilter, and a matching little-endian filtewhich inserts the simple
sum, and which would be checked in C using an equality test.
srec_cat infile \
--crop 0 OXFFFFFF \
--fill 0x00 0x00000 OxFFFFFF \
--b-e-checksum neg OXFFFFFF 1 1 \
- 0 outfile

Oops

Oops

Reference Manual SRecord 8

srec_aamples(1) srec xamples(1)

Assuming you chose the correct endian-ness,fjtur embedded code can check the BRRusing C
code similar to the following:

unsi gned char *begin = (unsigned |ong *)O0;

unsi gned char *end = (unsigned | ong *)OxFFFFF;

unsi gned char sum = O;

whi l e (begin < end)

sum += *begi n++;
if (sum!= *end)

{
}

In the 8-bit case, it doegnhatter whether you use the big-endian or little-endian filter.

Oops

You can look at the checksum of your data, by using the “hex-dump” output format.
srec_cat infile \
--crop 0 0x10000 \
--fill OxFF 0x0000 0x10000 \
- - b-e-checksum neg 0x10000 4 \
--crop 0x10000 0x10004 \
-0 - --hex-dunp
This command reads in the file, checksums the data and places the checksum at 0x10000, crops the result to
contain only the checksum, and then prints the checksum on the standard output in a claadieeinte
dump format.

Cyclic Redundancy Checks
The simple additie checksums ha a mmber of theoretical limitations, to do with errorsytt@an and
cant detect. TheCRC methods ha fewer problems.
srec_cat infile \
--crop 0 OXFFFFFC \
--fill 0x00 0x00000 OxFFFFFC \
--b-e-crc32 OxFFFFFC \
- 0 outfile
In the abee example, we hae an EPROM in the lowest mgabyte of memory The —crop filter ensures we
are only summing the data within the EPROM, and not anywhere else. The —fill filterfilislan left in
the data.Finally, the —b-e-checksum-gefilter inserts a 32 bit (4 byte) checksum in big-endian format in
the last 4 bytes of the EPROM image. Naturdligre is a little endian version of this filter as well.

The checksum is calculated using the industry standard 32-bit CRC. Because SRecord is open source, you
can alays read the source code to sewlitovorks. Thereare mag non-GPL version of this codevail-
able on the Internet, and suitable for embedding in proprietary firmware.

There is also a 16-bit CR@ailable.
srec_cat infile \
--crop 0 OXFFFFFE \
--fill 0x00 0x00000 OxFFFFFE \
--b-e-crcl6é OXFFFFFE \
-0 outfile

The checksum is calculated using the CCITT formBacause SRecord is open source, you canyal
read the source code to seavhibworks. Thereare mag non-GPL version of this codevalable on the
Internet, and suitable for embedding in proprietary firmware.

You can look at the CRC of your data, by using the “hex-dump” output format.
srec_cat infile \
--crop 0 0x10000 \
--fill OxFF 0x0000 0x10000 \
--b-e-crcl6 0x10000 \
--crop 0x10000 0x10002 \

Reference Manual SRecord 9

srec_aamples(1) srec xamples(1)

-0 - --hex-dunp
This command reads in the file, calculates the CRC of the data and places the CRC at 0x10000, crops the
result to contain only the CRC, and then prints the checksum on the standard output in a claadieail he
mal dump format.

Where Am |?
There are seral properties of you EPROM image that you may wish to insert into the data.
srec_cat infile --b-e-ni ni mum OXFFFFFE 2 - o outfile
The abee example inserts the minimum address of the diata (vate) into the data. This includes the
minimum itself. If the data already contains bytes at threngéddress, you need to use aftlaede filter
The value will be written with the most significant byte firshe number of bytes defaults to 4. There is
also a little-endian variant, anddwariants called “excluse’ that do not include the minimum itself.
srec_cat infile --b-e-naxi mum OXFFFFFE 2 - o outfile
The abee example inserts the maximum address of the datd (water + 1 just like address ranges) into
the data. This includes the maximum itsdff.the data already contains bytes at theagiaddress, you
need to use arxelude filter The value will be written with the most significant byte first. The number of
bytes defaults to 4. There is also a little-endianant, and tw variants called “eclusive’ that do not
include the maximum itself.
srec_cat infile --b-e-1ength OXFFFFFE 2 -0 outfile
The aboe example inserts the length of the datégh water+ 1 - low wate) into the data. This includes
the length itself.If the data already contains bytes at the length location, you need to use an exclude filter
The value will be written with the most significant byte firshe number of bytes defaults to 4. There is
also a little-endian variant, anddwariants called “excluge’ that do not include the length itself.

What Format Is This?

You can obtain a ariety of information about an EPROM load file by usingstee_inf¢1l) command.For
example:

$ srec_info exanple.srec

Format: Mdtorola S-Record

Header: "http://srecord. sourceforge. net/"

Execution Start Address: 00000000

Dat a: 0000 - 0122

0456 - OFFF

$
This example she that the file is a Motorola S-Record. The text in the file header is printed, along with
the ecution start address. The final section shows the address ranges containing data (the upper bound of
each subrange iaclusive, rather than thexclusive form used on the command line.

$ srec_info sone-weird-file.hex --guess

Format: Signetics

Dat a: 0000 - 0122

0456 - OFFF

$
The abee example guesses the EBRNI load file format. It isrt’'infallible but it usually gets it rightYou
can use-guessarywhere you would gie an explicit format, but it tends to be slower and not recom-
mended.

MANGLING THE D ATA
It is possible to change the values of the data bytevénadevays.
srec_cat infile --and OxFO -o outfile
The aboe example performs a bit-wise AND of the data bytes with the OxFO makk. addresses of
records are unchangetican't actually think of a use for this filter.
srec_cat infile --or OxOF -o outfile
The abee example performs a bit-wise OR of the data bytes with the OxOF bits. The addresses of records
are unchanged. can't actually think of a use for this filter.
srec_cat infile --xor OxA5 -0 outfile
The aboe example performs a bit-wisexelusive OR of the data bytes with the OxA5 bit§he addresses

Reference Manual SRecord 10

srec_aamples(1) srec xamples(1)

of records are unchangetiou could use this to obfuscate the contents of your EPROM.
srec_cat infile --not -o outfile
The aboe example performs a bit-wise NIOof the data bytes. The addresses of records are unchanged.

Security by obscurity?

COPYRIGHT
srec_catversion 1.47
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Peter Miller
The srec_catprogram comes with ABSOLUTBELNO WARRANTY; for details use thestec_cat -VER-
Sion Licensecommand. Thigs free software and you are welcome to redistalit under certain condi-
tions; for details use therec_cat -VERSion Licerissommand.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 11

