ucsd-psystem-xc
UCSD p-System Cross Compiler

Reference Manual

Peter Miller
<pmiller@opensource.grau>

This document describes ucsd-psystem-xc version 0.11
and was prepared 28 July 2012.

This document describing the ucsd-psystem-xc package, and the ucsd-psystem-xc utility pro-
grams, are
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 3 of
the License, or (at your option)\alater version.

This program is distributed in the hope that it will be useful VAITHOUT ANY WARRANTY,
without even the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should hae receved a mpy of the GNU General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Table of Contents(ucsd-psystem-xc)

Internals

ucsdpsys(1)
ucsdpsys_assemble(1)
ucsdpsys_charset(1)
ucsdpsys_charset(1)
ucsdpsys_compile(1)

ucsdpsys_depends(1)
ucsdpsys_disassemble(1)
ucsdpsys_dencase(1)
ucsdpsys_errors(1)
ucsdpsys_history(1)
ucsdpsys_libmap(1)
ucsdpsys_librarian(1)
ucsdpsys_link(1)
ucsdpsys_littoral(1)
ucsdpsys_opcodes(1)
ucsdpsys_osmakgen(1)
ucsdpsys_pretty(1)
ucsdpsys_setup(1)
ucsdpsys_xc_license(1)
ucsdpsys_codié(5)
ucsdpsys_errors(5)
ucsdpsys_opcodes(5)

Reference Manual

The README fle
Release Notes .
How to build ucsd- psystem XC .

factory factory factories: Abandon aII\ﬂ(Df control Ye vvho enter here

UCSIp-System launcher
UC$PEBystem cross assembler.
UCSBSystem font bilder .
UCSBSystem font bilder .

compiksscal source to UCSD p- System corﬂe f

Deviations from UCSD p-Systenagcal
UC%ascal file dependendracker
disasseralli€ESD p-System coddd

corert Pascal to lower case .
UCSDSystem assembler error f|Ia|hﬂer .
UCSBsscal notes and archaeology.
primap of UCSD p-System codief.
UCSP-System codefile librarian.
UCSP-System codefile lindr .
readCSD Pascal and write C++.

UCSEBystem system.opcodes generator .

writakefile for ucsd-psystem-os project
UCSPpSystem Pascal pretty printer
manipuldte SYSTEM.MISCINFOife .
GN&keneral Public License .
UCSDp-System codefile format .

UCSDSystem assembler error file format .

fornaitthe OPCODES.I1.0ile

ucsd-psystem-xc

Table of Contents(ucsd-psystem-xc)

N

CROBROPFIIdIODRRRRdM ™

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

ucsdpsys_history(1) 48 ucsdpsys history - UCSD Pascal notes and archaeology
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy]Systenassembler

cross
ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System assembler error file builder
ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System assembler error file format
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy]System cross

assembler
ucsdpsys_charset(1) 30 ucsdpsys charset - UCSD p[hy]System fonbuilder
ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]Systembuilder
assembler error file

ucsdpsys_littoral(1) 83 ucsdpsys littoral - read UCSD Pascal andC++

write
ucsdpsys_dencase(1) 46 ucsdpsys downcase - a@nt Pascal to lower case
ucsdpsys_charset(1) 30 ucsdpsys charset - UCSD p[hy]System font builde
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source toode file

UCSD p[hy]System
ucsdpsys_disassemble(1) 44ucsdpsys disassemble - disassemble a UCStade file

p[hy]System
ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD code file
p[hy]System
ucsdpsys_codié(5) 102 ucsdpsys codefile - UCSD p[hy]System codefile format
ucsdpsys_librarian(1) 78 ucsdpsys librarian - UCSD p[hy]System codefile librarian
ucsdpsys_link(1) 81 ucsdpsys link - UCSD p[hy]System codefile linker
ucsdpsys_codié(5) 102 ucsdpsys codefile - UCSD p[hy]System codefile
format
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to UCS
p[hy]System code file
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source to UCSD
p[hy]System code file
ucsdpsys_dencase(1) 46 ucsdpsys downcase - aa@nt Pascal to lower case
ucsdpsys_assemble(1) 25 ucsdpsys assemble - UCSD p[hy]System cross assembler
ucsdpsys_depends(1) 42 ucsdpsys depends - UCSD Pascal file dependeacker
ucsdpsys_depends(1) 42 ucsdpsys depends - UCSD Pascal file dependenc
tracker
ucsdpsys_disassemble(1) 44 ucsdpsys disassemble - disassemble a UCSD p[hy]System coc
ucsdpsys_disassemble(1) 44 ucsdpsys disassemble - disassemble a UCSD
p[hy]System code file
ucsdpsys_dencase(1) 46 ucsdpsys downcase - aant Pascal to lower case
ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]Systemerror file builder
assembler
ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]Systemerror file format
assembler
ucsdpsys_errors(1) 47 ucsdpsys errors - UCSD p[hy]System assembler ¢
file builder
ucsdpsys_errors(5) 106 ucsdpsys errors - UCSD p[hy]System assembler ¢
file format
ucsdpsys_compile(1) 31 ucsdpsys compile - compile Pascal source thle

UCSD p[hy]System code

ucsdpsys_disassemble(1) 44ucsdpsys disassemble - disassemble a UCSie
p[hy]System code

ucsdpsys_libmap(1) 77 ucsdpsys libmap - print map of UCSD file
p[hy]System code

Reference Manual ucsd-psystem-xc vi

Table of Contents(ucsd-psystem-xc) Table of Contents(ucsd-psystem-xc)

ucsdpsys_opcodes(5)
ucsdpsys_setup(1)
ucsdpsys_errors(1)

ucsdpsys_depends(1)
ucsdpsys_errors(5)

ucsdpsys_charset(1)
ucsdpsys_codié(5)

ucsdpsys_errors(5)
ucsdpsys_opcodes(5)
ucsdpsys_osmakgen(1)
ucsdpsys_opcodes(1)
ucsdpsys_history(1)
ucsdpsys_osmakgen(1)
ucsdpsys_osmakgen(1)
ucsdpsys_errors(1)

ucsdpsys_errors(5)
ucsdpsys_compile(1)

ucsdpsys_disassemble(1)

ucsdpsys_libmap(1)
ucsdpsys_codié(5)
ucsdpsys_librarian(1)
ucsdpsys_link(1)
ucsdpsys_assemble(1)
ucsdpsys_charset(1)
ucsdpsys(1)
ucsdpsys_pretty(1)
ucsdpsys_opcodes(1)
ucsdpsys_opcodes(5)

ucsdpsys(1)
ucsdpsys_assemble(1)
ucsdpsys_charset(1)
ucsdpsys_charset(1)
ucsdpsys_codié(5)
ucsdpsys_compile(1)
ucsdpsys_depends(1)

ucsdpsys_disassemble(1)

ucsdpsys_dencase(1)
ucsdpsys_errors(1)
ucsdpsys_errors(5)
ucsdpsys_history(1)

Reference Manual

107 ucsdpsys opcodes - format of thefile
OPCODES.II.0
91 ucsdpsys setup - manipulate thefile
SYSTEM.MISCINFO
47 ucsdpsys errors - UCSD p[hy]Systemfile builder
assembler error
42 ucsdpsys depends - UCSD Pascdlile dependenctracker
106 ucsdpsys errors - UCSD p[hy]Systemfile format

assembler error
30 ucsdpsys charset - UCSD p[hy]System font builder

102 ucsdpsys codefile - UCSD p[hy]Systemformat
codefile
106 ucsdpsys errors - UCSD p[hy]Systemformat
assembler error file
107 ucsdpsys opcodes - format of the OPCODES.II.O file

86 ucsdpsys osmakgen - write the Makefile for the ucsd[hy]psystem[hy]os project
84 ucsdpsys opcodes - UCSD p[hy]Systengenerator
system.opcodes
48 ucsdpsys history - UCSD Pascal notes and
archaeology
86 ucsdpsys osmakgen - write the Makefile fothy]os project
the ucsd[hy]psystem][
86 ucsdpsys osmakgen - write the Makefile fothy]psystem[hy]os project

the ucsd[
47 ucsdpsys errors - UCSD p[hy]System assembler error file builder
106 ucsdpsys errors - UCSD p[hy]System assembler error file format
31 ucsdpsys compile - compile Pascal source thy]System code file
UCSD p[
44ucsdpsys disassemble - disassemble a UCS]System code file
pl
77 ucsdpsys libmap - print map of UCSD p[hy]System code file
102 ucsdpsys codefile - UCSD p[hy]System codefile format
78 ucsdpsys librarian - UCSD p[hy]System codefile librarian
81 ucsdpsys link - UCSD p[hy]System codefile linker
25 ucsdpsys assemble - UCSD p[hy]System cross assembler
30 ucsdpsys charset - UCSD p[hy]System font builder
23 ucsdpsys - UCSD p[hy]System launcher
89 ucsdpsys pretty - UCSD p[hy]System Pascal pretty printer
84 ucsdpsys opcodes - UCSD p[hy]System system.opcodes generator
107 ucsdpsys opcodes - format of thell.O file
OPCODES.
23 require_ index
25 require_ index
30 require_ index
30 require_ index
102 require_ index
31 require_ index
42 require_ index
44 require_ index
46 require_ index
47 require_ index
106 require_ index
48 require_ index

ucsd-psystem-xc %

Table of Contents(ucsd-psystem-xc)

ucsdpsys_libmap(1)
ucsdpsys_librarian(1)
ucsdpsys_link(1)
ucsdpsys_littoral(1)
ucsdpsys_opcodes(1)
ucsdpsys_opcodes(5)
ucsdpsys_osmakgen(1)
ucsdpsys_pretty(1)
ucsdpsys_setup(1)
ucsdpsys(1)
ucsdpsys_libmap(1)

ucsdpsys_librarian(1)
ucsdpsys_librarian(1)

ucsdpsys_link(1)
ucsdpsys_link(1)
ucsdpsys_littoral(1)
ucsdpsys_dencase(1)
ucsdpsys_osmakgen(1)

ucsdpsys_setup(1)
ucsdpsys_libmap(1)
ucsdpsys_setup(1)
ucsdpsys_history(1)
ucsdpsys_opcodes(5)
ucsdpsys_opcodes(1)

ucsdpsys_opcodes(5)
ucsdpsys_opcodes(1)

ucsdpsys_osmakgen(1)
ucsdpsys_osmakgen(1)

ucsdpsys_littoral(1)
ucsdpsys_depends(1)
ucsdpsys_history(1)
ucsdpsys_pretty(1)
ucsdpsys_compile(1)

ucsdpsys_dencase(1)
ucsdpsys_errors(1)
ucsdpsys_errors(5)
ucsdpsys_compile(1)

ucsdpsys_disassemble(1)

ucsdpsys_libmap(1)
ucsdpsys_codié(5)
ucsdpsys_librarian(1)
ucsdpsys_link(1)
ucsdpsys_assemble(1)

Reference Manual

Table of Contents(ucsd-psystem-xc)

77 require_ index

78 require_ index
81 require_ index
83 require_ index

84 require_ index
107 require_ index

86 require_ index

89 require_ index

91 require_ index
23 ucsdpsys - UCSD p[hy]System launcher

77 ucsdpsys libmap - print map of UCSD p[hy]Systen

code file
78 ucsdpsys librarian - UCSD p[hy]Systemlibrarian
codefile
78 ucsdpsys librarian - UCSD p[hy]System codefile

librarian

81 wucsdpsys link - UCSD p[hy]System codefile linker

81 ucsdpsys link - UCSD p[hy]System codefile linker
83 ucsdpsys littoral - read UCSD Pascal and write CH
46 ucsdpsys downcase - c@t Pascal to lower case
86 ucsdpsys osmakgen - write the Makefile for the ucsd[hy]psystem[hy]o
project
91 ucsdpsys setup - manipulate the SYSTEM.MISCINFO fil
77 ucsdpsys libmap - print map of UCSD p[hy]System code file
91 ucsdpsys setup - manipulate the SYSTEM. MISCINFO file
48 ucsdpsys history - UCSD Pascal notes and archaeology
107 ucsdpsys opcodes - format of the OPCODES.II.0
84 ucsdpsys opcodes - UCSD p[hy]Systenppcodes generator
system.
107 ucsdpsys opcodes - format of the OPCODES.II.O file
84 ucsdpsys opcodes - UCSD p[hy]System
system.opcodes generator
86 ucsdpsys osmakgen - write the Makefile for the

ucsd[hy]psystem[hy]os project
86 ucsdpsys osmakgen - write the Makefile foros project
the ucsd[hy]psystem[hy]

83 ucsdpsys littoral - read UCSD Pascal and write C++
42 ucsdpsys depends - UCSD Pascal file dependendracker
48 ucsdpsys history - UCSD Pascal notes and archaeology
89 ucsdpsys pretty - UCSD p[hy]System Pascal pretty printer
31 ucsdpsys compile - compile Pascal source to UCSD p[hy]System code
file
46 ucsdpsys downcase - c@t Pascal to lower case
47 ucsdpsys errors - UCSD p[hy]System assembler error file builde
106 ucsdpsys errors - UCSD p[hy]System assembler error file forma
31 ucsdpsys compile - compile Pascal source tp[hy]System code file
UCSD
44ucsdpsys disassemble - disassemble a UCSD p[hy]System code file
77 ucsdpsys libmap - print map of UCSD p[hy]System code file
102 ucsdpsys codefile - UCSD p[hy]System codefile format
78 ucsdpsys librarian - UCSD p[hy]System codefile librarian
81 ucsdpsys link - UCSD p[hy]System codefile linker
25 ucsdpsys assemble - UCSD p[hy]System cross assembler

ucsd-psystem-xc Vi

Table of Contents(ucsd-psystem-xc)

ucsdpsys_charset(1)
ucsdpsys(1)
ucsdpsys_pretty(1)
ucsdpsys_opcodes(1)
ucsdpsys_pretty(1)
ucsdpsys_pretty(1)

ucsdpsys_pretty(1)

ucsdpsys_libmap(1)
ucsdpsys_osmakgen(1)

ucsdpsys_osmakgen(1)

ucsdpsys_littoral(1)
ucsdpsys(1)
ucsdpsys_assemble(1)
ucsdpsys_charset(1)
ucsdpsys_charset(1)
ucsdpsys_codié(5)
ucsdpsys_compile(1)
ucsdpsys_depends(1)

ucsdpsys_disassemble(1)

ucsdpsys_dencase(1)
ucsdpsys_errors(1)
ucsdpsys_errors(5)
ucsdpsys_history(1)
ucsdpsys_libmap(1)
ucsdpsys_librarian(1)
ucsdpsys_link(1)
ucsdpsys_littoral(1)
ucsdpsys_opcodes(1)
ucsdpsys_opcodes(5)
ucsdpsys_osmakgen(1)
ucsdpsys_pretty(1)
ucsdpsys_setup(1)
ucsdpsys_setup(1)

ucsdpsys_compile(1)
ucsdpsys_errors(1)
ucsdpsys_errors(5)
ucsdpsys_compile(1)

ucsdpsys_disassemble(1)

ucsdpsys_libmap(1)
ucsdpsys_codié(5)
ucsdpsys_librarian(1)
ucsdpsys_link(1)
ucsdpsys_assemble(1)
ucsdpsys_charset(1)
ucsdpsys(1)
ucsdpsys_setup(1)

Reference Manual

Table of Contents(ucsd-psystem-xc)

30 ucsdpsys charset - UCSD p[hy]System font builder
23 ucsdpsys - UCSD p[hy]System launcher

89 ucsdpsys pretty - UCSD p[hy]System Pascal pretty printer

84 ucsdpsys opcodes - UCSD p[hy]System system.opcodes generatt
89 ucsdpsys pretty - UCSD p[hy]System Pascal pretty printer

89 ucsdpsys pretty - UCSD p[hy]System Pascal prett

printer
89 ucsdpsys pretty - UCSD p[hy]System Pascaprinter
pretty
77 ucsdpsys libmap - print map of UCSD p[hy]System code fi

86 ucsdpsys osmakgen - write the Makefile forproject
the ucsd[hy]psystem[hy]os
86 ucsdpsys osmakgen - write the Makefile forpsystem[hy]os project
the ucsd[hy]

83 ucsdpsys littoral - read UCSD Pascal and write C++
23 require_index
25 require_index
30 require_index
30 require_index
102 require_index
31 require_index
42 require_index
44 require_index
46 require_index
47 require_index
106 require_index
48 require_index
77 require_index
78 require_index
81 require_index
83 require_index
84 require_index
107 require_index
86 require_index
89 require_index
91 require_index
91 ucsdpsys setup - manipulate the
SYSTEM.MISCINFO file
31 ucsdpsys compile - compile Pascal source to UCSD p[hy]System code file
47 ucsdpsys errors - UCSD p[hy] System assembler error file builder
106 ucsdpsys errors - UCSD p[hy] System assembler error file format
31 ucsdpsys compile - compile Pascal source t8ystem code file
UCSD p[hy]
44ucsdpsys disassemble - disassemble a UCSBystem code file
plhy]

77 ucsdpsys libmap - print map of UCSD p[hy] System code file

102 ucsdpsys codefile - UCSD p[hy] System codefile format
78 ucsdpsys librarian - UCSD p[hy] System codefile librarian
81 ucsdpsys link - UCSD p[hy] System codefile linker
25 ucsdpsys assemble - UCSD p[hy] System cross assembler
30 ucsdpsys charset - UCSD p[hy] System font builder

23 ucsdpsys - UCSD p[hy] System launcher
91 ucsdpsys setup - manipulate the SYSTEM.MISCINFO file

ucsd-psystem-xc Vil

Table of Contents(ucsd-psystem-xc)

ucsdpsys_opcodes(1)
ucsdpsys_pretty(1)

ucsdpsys_opcodes(1)
ucsdpsys_depends(1)

ucsdpsys_osmakgen(1)
ucsdpsys_littoral(1)
ucsdpsys_depends(1)
ucsdpsys_history(1)
ucsdpsys_errors(1)

ucsdpsys_errors(5)

ucsdpsys_compile(1)

ucsdpsys_disassemble(1)

ucsdpsys_libmap(1)
ucsdpsys_codié(5)
ucsdpsys_librarian(1)
ucsdpsys_link(1)
ucsdpsys_assemble(1)
ucsdpsys_charset(1)
ucsdpsys(1)
ucsdpsys_pretty(1)
ucsdpsys_opcodes(1)

ucsdpsys_assemble(1)
ucsdpsys_charset(1)
ucsdpsys_codié(5)
ucsdpsys_compile(1)

ucsdpsys_depends(1)

ucsdpsys_disassemble(1)

ucsdpsys_dencase(1)
ucsdpsys_errors(1)
ucsdpsys_errors(5)
ucsdpsys_history(1)
ucsdpsys_libmap(1)
ucsdpsys_librarian(1)

ucsdpsys_link(1)

Reference Manual

Table of Contents(ucsd-psystem-xc)

84 ucsdpsys opcodes - UCSD p[hy]System system.opcodes generator

89 ucsdpsys pretty - UCSD p[hy] System Pascal pretty printer
84 ucsdpsys opcodes - UCSD p[hy] System system.opcodes generator
42 ucsdpsys depends - UCSD Pascal filaracker
dependency
86 ucsdpsys osmakgen - write the Makefile forucsd[hy]psystem[hy]os project
the
83 ucsdpsys littoral - read UCSD Pascal and write C++
42 ucsdpsys depends - UCSD Pascal file dependeacker
48 ucsdpsys history - UCSD Pascal notes and archaeology
47 ucsdpsys errors - UCSD p[hy]System assembler error file
builder
106 ucsdpsys errors - UCSD p[hy]System assembler error file
format

31 ucsdpsys compile - compile Pascal source to UCSD p[hy]System code file

44 ucsdpsys disassemble - disassemble a UCSD p[hy]System code file
77 ucsdpsys libmap - print map of UCSD p[hy]System code file
102 ucsdpsys codefile - UCSD p[hy]System codefile format
78 ucsdpsys librarian - UCSD p[hy]System codefile librarian
81 ucsdpsys link - UCSD p[hy]System codefile linker
25 ucsdpsys assemble - UCSD p[hy]System cross assembler
30 ucsdpsys charset - UCSD p[hy]System font builder
23 ucsdpsys - UCSD p[hy]System launcher
89 ucsdpsys pretty - UCSD p[hy]System Pascal pretty printe
84 ucsdpsys opcodes - UCSD p[hy]System system.opcodes
generator
25 ucsdpsys assemble - UCSD p[hy]System
cross assembler
30 ucsdpsys charset - UCSD p[hy]System fc
builder
102 ucsdpsys codefile - UCSD p[hy]System
codefile format
31 ucsdpsys compile - compile Pascal sourc
UCSD p[hy]System code file
42 ucsdpsys depends - UCSD Pascal file
dependengtracker
44 ucsdpsys disassemble - disassemble a U
p[hy]System code file
46 ucsdpsys downcase - c@t Pascal to lowe
case
47 ucsdpsys errors - UCSD p[hy]System
assembler error file builder
106 ucsdpsys errors - UCSD p[hy]System
assembler error file format
48 ucsdpsys history - UCSD Pascal notes at
archaeology
77 ucsdpsys libmap - print map of UCSD
p[hy]System code file
78 ucsdpsys librarian - UCSD p[hy]System
codefile librarian
81 ucsdpsys link - UCSD p[hy]System codef
linker

ucsd-psystem-xc viii

Table of Contents(ucsd-psystem-xc)

ucsdpsys_littoral(1)
ucsdpsys_opcodes(5)
ucsdpsys_opcodes(1)
ucsdpsys_osmakgen(1)
ucsdpsys_pretty(1)
ucsdpsys_setup(1)
ucsdpsys(1)

ucsdpsys_littoral(1)
ucsdpsys_osmakgen(1)

Reference Manual

83

107

84

86

89

91

23

83
86

Table of Contents(ucsd-psystem-xc)

ucsdpsys littoral - read UCSD Pascal anc
write C++

ucsdpsys opcodes - format of the
OPCODES.II.0 file

ucsdpsys opcodes - UCSD p[hy]System
system.opcodes generator

ucsdpsys osmakgen - write the Makefile
the ucsd[hy]psystem[hy]os project
ucsdpsys pretty - UCSD p[hy]System Pa:
pretty printer

ucsdpsys setup - manipulate the
SYSTEM.MISCINFO file

ucsdpsys - UCSD p[hy]System launcher

ucsdpsys littoral - read UCSD Pascal and write C++

ucsdpsys osmakgen -

ucsd-psystem-xc

write the Makefile for the
ucsd[hy]psystem[hy]os project

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

NAME
ucsd-psystem-xc — UCSD p-System Pascal cross compiler

DESCRIPTION
Theucsd-psystem-xgackage is a collection of tools for compiling Pascal source files to produce UCSD
p_System codeélés. Thepackage includes:

ucsdpsyfl)
A laucher to run the virtual machine comfortably from the command line. It includes a batch

mode for automating (scripting) operations.

ucsdpsys_assemkig
The cross assemblelt is ale to assemble geral different target microprocessor architectures
in the one recutable.

ucsdpsys_compilt)
The cross compilerlt understands the UCSD Pascal dialect, including UNIT definitions and
references.

ucsdpsys_depends
May be used to determine include file dependencies, for usenakti1) and other build tools.
ucsdpsys_disassem{le
For disassembling UCSD p-System coded. Thisis used to verify the correctness of the
compiler.

ucsdpsys_downcadg
A untility for corverting Pascal code to lower case, leaving string constants and comments
unaltered.

ucsdpsys_erro4)
A utility to translate back and forth between text and binary representations of the assembler error
message files.

ucsdpsys_libmdp)
A utility for printing segment maps of UCSD p-System library files.

ucsdpsys_librariafi)
A utility for manipulating the segments within UCSD p-System codefiles.

ucsdpsys_lin|d)
A utility for linking UCSD p-System codefiles to their assembler components.

ucsdpsys_opcodgs
A utility to translate back and forth between text and binary representations of the assembler
opcode files.

ucsdpsys_set(p)
A utility to translate back and forth between text and binary representations of the
system.miscinfo file.

Sister Projects
Some other projects will be of interest to you.

ucsd-psystem-fs
This package contains tools for manipulating UCSD p-Systemyfldigk images, and a file
system for mounting them in Linux as real file systems.
http://ucsd-psystem-fs.sourceforge.net/

ucsd-psystem-os
This project provides a self-hosting set of system sounéas.need the disk images produced by
this project for the virtual machine toveaa ‘system.pascal” file to run (this provides runtime
support and the user commanaautive). Thisis a work in progress.

Reference Manual ucsd-psystem-xc 1

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

uvsd-psystem-vm
This package provides a fully featured UCSD p-Machine emulator.

ARCHIVE SITE
The latest version afcsd-psystem-xe available on the Web from:

URL: http://ucsd-psystem-xc.sourcejernet/
File: ucsd-psystem-xc-0.11.README # Description, from the tar file

File: ucsd-psystem-xc-0.11.Ism # Description, LSM format
File: ucsd-psystem-xc-0.11.1gz #the complete source
File: ucsd-psystem-xc-0.11.pdf # Reference Manual

BUILDING ucsd-psystem-xc
Full instructions for buildingicsd-psystem-xmay be found in thBUILDING file included in this
distribution.

COPYRIGHT
ucsd-psystem-xeersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) ary later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANqithout
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should hae received a @py of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in the.ICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 2

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

RELEASE NOTES
This section details the features and bug fixes of each of the releases.

Version 0.11 (2012-Jul-28)

Kai Henningsen <kai.extern@gmail.com> digaed that 'Makefile’ files generated by
ucsdpsys_osmakgen did not correctly support the 'distclean’ target. This has been corrected.

Work is in progress to be able to cope with multiple p-machine versions.
The compiler is ne able to cope with variables declared in plain units.

Theucsdpsys_osmakgédn command ne understands he to generate the necessary debian/ files for
building a debian package from the ucsd p-system operating system sources.

Thw ucsdpsygl) file no longer creates the implied system disk image if one of the supplied disk images
is a functioning system disk.

Theucsdpsyél) command n@ better understands where ucsd-psystem-os installs its files, which it
needs in order to build the default system disk image.

Version 0.10 (2011-May-18)

A bug which caused a segfault in thiesdpsys ——batcloption has been fixed.

Theucsdpsys_osmakgdn command, used by the ucsd-psystem-os project to geneidekifle
now understands the presence of man pages, and installs them appropriately.

Version 0.9 (2011-Feb-02)

The slides of the LCA 2011 talk "Factory Factory Factories" s a@ilable in the web site.
Theucsdpsys_osmakgédn command has been impeaol, with a viev to Debian packaging of the OS.

Theucsdpsyél) command has a new-no—systemoption, to suppress the construction of a system disk
image.

There is a newmcsdpsys_compilg) option,——library—path for adding directories to the library search
path.

Theucsdpsys_compilg) command ne fully supports th¢*$U filename *) control comment.

Theucsdpsys_assemlil¢ command nw understands therror.print.sbttl.title pseudo-
ops, mostly named for PDP-11 assmebler pseudo-ops of the same name.

Theucsdpsys_chargdf) command has been maal to this project, out of the ucsd-psystem-fs project.

Theucsdpsys_assemfil¢ command nw understands hw to produce assembler listings, using tHe
option. Seaicsdpsys_assemlilg for more information.

Theucsdpsys_compile) command n@ issues warnings for unreachange statements. There is a new
(*$warning unreachable false *) control comment to disable the warning.

The project download web pagewincludes a link to the LunchPad PPA, where pre-compiled Ubuntu
packages arevailable.

Theucsdpsys_assemlil¢ command nw understands theef pseudo-op, and generates the
appropriate relocation information.

Theucsdpsys_assemlil¢ command n@ more closely emulates the UCSD ratessemblerin the way
it forgets symbols created between gm®c and anotherThis stops historical source files from
complaining about multiply defined symbols alleothe place.

Theucsdpsys_assemfil¢ command nw requires that the architecture be explicitly stated, either with
the.arch pseudo-op, or the—arch command line option, in all cases.

Theucsdpsys_assemlil¢ command nw ignores all input after thend directive.

Theucsdpsys_assemb(&) command ne understandsgt greater thany= greater than or equalt
less thang= less than or equat> inequality and = equality comparisons.

Reference Manual ucsd-psystem-xc 3

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

» Theucsdpsys_assemllg command, ne understands, for 6502 opcodeswio relocate segment
relative aldresses for absolute addressing opcodes.

e Theucsdpsys_assemklg command ne understands conditional assembfy , .else and.endc
pseudo-op direoctes.

» Theucsdpsys_assemb{éj command ne understands thenacro pseudo-op, for defining an
substituting macros into the code stream.

» Abug has been fixed in the code that checks codefiles for validity longer rejects segment
dictionaries with zero-length UNITSEGgeents. Thesare produced when a program USES a non-
intrinsic unit, but is not yet linked.

Version 0.8 (2010-Aug-28)
» Theucsdpsys_assemkilg cross assembler wainderstands thdunc pseudo-op.

» The error message formatting has been changed to use a 4 character hanging indent for multi-line error
messages.

» Abug has been fixed in theesdpsys_osmakgdn command, it n@ correctly understands fcto
remove g/stem segments from libraries with an assembler component.

» Theucsdpsys_osmakgdn command nw understands o to link Pascal programs with their assembler
components.

» Abug has been fixed in theesdpsydl) command, it no longer fails if its temporary files are unlinked
twice.

» There is a newcsdpsys_compilg) ——view—path option, symmetric with thacsdpsys_assemkilg and
ucsdpsys_depend3 commands’ options of the same name.

» Theucsdpsys_assemflg command ne understands théncude pseudo-op. Thigs also a new
corresponding-l command line option.

» Abug has been fixed in theesdpsys_librariafl) command, it n@ patches the segment number in the
procedure dictionary when it renumbers a segment.

» Abug has been fixed in theesdpsys_disassemfdg anducsdpsys_libmdf) commands, thewere
printing SEPPROC link information incorrectly.

» Theucsdpsys_osmakgdn command nw generates an “install” target, so that the results of the build
can be installed into the system.

e Theucsdpsys_assemkilg cross assembler wayroks unary minus (—e) unary plus (+e) bit-wise and (el
& e2), bit-wise or (el | e2), bit-wise not ("e), bit-wise exslesir (el " e2), and modulo (el % e2)
expressions.

e Theucsdpsys_compil) cross compiler can mocope with VAR clauses in the IMPLEMEMTION
section of a UNIT.

» Theucsdpsys_compilt) cross compiler is moable to cope with units that export variables, noth
intrinsic and non-intrinsic.

» Theucsdpsys_compilg) grammar ne understands “var anything” parameters to external assembler
procedures and functions.

e Theucsdpsys_osmakgdn command nw understands assembler source file include dependencies.

» Theucsdpsys_depends command ne understands heto process assembler source files, when
looking for include dependencies.

» Theucsdpsys_assemklg command ne procuces minimally correct relocation data sectiosn for each
native awde procedure. Thacsdpsys_disassem{de command n@ has a minimally correct
understanding of relocation data.

» There is a newcsdpsys_linfd) command, that may be used to link programs and libraries of separate
procedures and functions togetherproduce &ecutable output codiés. Seaicsdpsys_lini) for

Reference Manual ucsd-psystem-xc 4

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

more information.

Theucsdpsys_libmdf) anducsdpsys_disassemflg commands ne include the EOFMARK link
information record, to be sure it contains the correguiraent. Thaicsdpsys_assemfilg and
ucsdpsys_compil#) commands ne correctly generate EOFMARK link information records.

Theucsdpsys_littordll) command ne correctly translatesil to NULL

Theucsdpsys_littordll) command ne expandswith variables completely This preserves the
semantics into the C++ code.

There is nw a kuild dependencon thelibexplain project (http://libexplain.sourceforge.net/).

A bug has been fixed in theesdpsyél) command, it no longewerwrite its own temporanyiles. All of
theucsdpsyél) options nw havelong versions as well. The UCSD p-System volumes that are created
on-the-fly are nev created large enough to hold all of the data.

Theucsdpsys_osmakgédn command is ne able to figure out when it needs to nesk opy of
system/globals.text based on include dependgnnformation and the source file manifest.

Thefor statement n@ understandseal control \ariables. Not¢hat the natie ompiler does not
allow this.

Theucsdpsys_assemlilg cross assembler wainderstands thaelef pseudo-op.

Version 0.7 (2010-Jun-21)

There is a newcsdpsys_osmakgdn command, used to write tMakefile for the ucsd-psystem-os
project.

Theucsdpsys_set(p) command ne accepts ar-—arch option, in order to select the bytexss the
SYSTEM.MISCINFOfile it generates.

There is a newcsdpsys_errof4) command, to translating the assembler error files from text to binary.

Theucsdpsys_opco¢ie) command n@ understands the opcode file format used by the UCSD Adapti
Assembler.

A bug has been fixed in theesdpsys_dependd command, it no longer writes to a file called “~" when
it should write to the standard output.

Theucsdpsys_libraria¢l) command has a new-remove-system-segments option, used to
remove dummy segments from@&$U-*) utility.

Theucsdpsys_libraria¢l) command is n@ able to renumber segments whenytlaee transferred
bwtween codefiles.

Theucsdpsys_compil&) command has a new-hostoption, that allows you to set the bytecbased
on the name of the host. Which helps those of us whd decéssarily remember what endian-ness all
of the hosts actually are.

Theucsdpsys_assemfil¢ command has a new-architecture option, to permit the target architecture
to be set from the command line.

Theucsdpsys_assemlilg multi-target cross assemblemnbas the beginnings of support for PDP-11
assembler.

The cross compiler is moable to recognize the ord/odd hack (used to gain access to bit-wise opcodes)
and turn such expression trees from logical operations into bit-wise operations.

The disassembler no longer rejects valid machine code segments with very short procedures.

Theucsdpsys_assemlilg multi-target cross assemblemnbas beginnings of 6502 support, including
both the MosTech syntax and the Apple syntax.

A bug has been fixed in the cross compiliemow generates the correct opcode for the inline-math sqrt
function.

Reference Manual ucsd-psystem-xc 5

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

e The assembler mohas aradix pseudo-op, that may be used to change the default radix being used
by the assembler.

» Abug has been fixed in repeat/until statements, it was generating no code in some cases.

Version 0.6 (2010-May-30)
e The compiler nav understands EXTERNAL function and procedure declarations, and produces
corresponding linker records.

» The compiler nav has complete long integer support.
e The compiler nev understands the built-in STR function.

« Itis now possible to write long integer constants in the source codey thkethe same forms as other
integer constants, except yhare sufixed with the letter L. This is an idea transplanted from C, the
UCSD natve mmpiler does not recognise such constants. It makes testing and debugging the long
integer constant folding much easier.

» The compiler nav understandsinit definitions, using Il.1 syntax and semantics. If B¶te
unit definitions are seen, theesult in a warning, and tteeparate keyword is otherwise ignored.

» The compiler nav understands a C-style ternary operator expregsibr? e2 : e3) . The UCSD
native wmpiler doesn’havethis.

Version 0.5 (2010-May-17)
» There is a newW$feature underscore-significant true*) contol comment, that may be
used for increased ISO 10206 conformance.

» Abug has been fixed in the RECORD code, it no longer places the selector variable in the variant part of
the record, and thus is no longer requesting memory from NEW that is one word short.

* There is a newW$feature efj-nfj false*) control comment to turn bfhe use of the EFJ and
NFJ opcodes.

* There is a new$feature short-with false*) control comment, that can be used to turn off
WITH statement optimizations.

» The built-in UNITWRITE procedure moaccepts string constants for the second paraméter UCSD
native cmpiler did not allav this. Handyfor debugging the system 1/O procedures.

» The compiler nav optimizes IF stratements with GO dauses. Ihow goes directly to the label from
the condition, when possible, rather than using UJP in the individual clauses.

» The IF statement mogenerates better code for the case where THEN is empty but ELSE is not.

» The compiler nav understands the ISO 10206 integer constants with an explicit radix. This was not
available in the UCSD naté compiler, for obvious reasons.

» The is a newucsdpsys_set(p) command, used to encode and decodSW&TEM.MISCINFOfile.

e There is a newcsdpsys_downcadg command, that may be used tov@hidentifiers in Pascal source
code from upper case to lower case.

» The compiler no longer has a problem with sets passed as parameters. The way sets are push onto the
stack has been further optimized.

e The compiler nev understands he to optimize avay MOVELEFT, MOVERIGHT and FILLCHAR with
a constant zero or mgtive length.

» Abug has been fixed in the IN operatiorthe case where the set had a fixed size.

» A bug has been fixed in the constant folding of string comparisons, it was getting relational comparisons
(<, <=, >, >=) wrong, but equality comparisons (=, <>) right.

» Abug has been fixed in the indexing of byte arrays (pointers) with enum types. It no longer throws an
assert.

Reference Manual ucsd-psystem-xc 6

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

The compiler nav issues warnings for comments that are not ISO 7185 comforming.

A bug has been fixed in the code generation oMWPcodes, in the case where more than 127 words
had to be meed.

The compiler nv understandarctan (ISO 10206) as a synonym fatan , but only if (*$feature
inline-math true*) is in effect.

The compiler nav generates correct code for N@gical expressions assigned to a boolean variable, or
passed as a boolean parameter.

A bug has been fixed in the code that folds constant MPI (integer multiply) expressions.
A bug has been fixed in the optimization of integer subtraction.

A bug has been fixed in the optimization of the ADI (add integer) expression.

A bug has been fixed in the optimisation of the logicalN&pression.

The cross compiler mounderstands the bit-wise integer AND, OR andIN®pressions.

The compiler nav generates LDB (load byte) and STB (store byte) instructions for packed arrays of 8-bit
things, not just packed array of chdis is the same behaviour as the UCSDveatimpiler.

There is a newcsdpsys_librariafl) —R option, that can be used to remeaegments by name or by
number.

Version 0.4 (2010-May-06)

A bug has been fixed in the code generation for large set constants.
The CASE statement mounderstands mggtive @ase values.

The compiler nev understands heto cast string constants into packed-array-of-char constants, when
they are procedure and functions parameters.

The compiler nev understands when a case control expression is a function call with no parameters.
The compiler nv understands functions calls with no parameters on either side of the IN operator.
The compiler nev generates the correct code for segment procedures that are declared forward.
The compiler nv understands heto pass parameters that are records, by value.

The compiler nav generates correct code for array parameters wherategassed by value.

A bug has been fixed in the READLN code generation, it no longer throws an assert.

The compiler no longer issues syntax errors when semicolons appear in questionable places in RECORD
declarations.

The way symbol conflicts and shadows are calaculated has been changed, it was getting fedsenpositi
the conflict tests.

The compiler nev understands passing a string as the first parameter to the FILLCHAR procedure.
The compiler nv understands the unary plus operator.

The compiler nv understands the built-in GEGOTOXY, PAGE, PUT, SEEK, UNITSTATUS and
UNITWAIT procedures.

There is a n@ (*$feature inline-math true*) control comment. When this is enabled, the compiler now
understands the built-inTAN, COS, EXPLN, LOG, SIN and SQRfunctions.

There is a newmcsdpsys_assemflg command, that may be used to assemble machine code and p-code.
It isn’t particularly capable, as yet, but it will become more so as work proceeds on the p-machine
vaidation

The compiler nav accepts for loops of char values where one or both limits are char constants.

The built-in FILLCHAR procedure mo accepts its third paramater being an enumerated type. This is for
backwards compatibility with the UCSD naticompiler.

Reference Manual ucsd-psystem-xc 7

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

» The compiler nav understands h to index an aray by a charalue. Preiously it was throwing an
assert.

» There is a ne@ (*$feature ignore-undefined-segment-zero true *) option, that can be used to turn off
checking for undefined forward declarations, when those symbols would be in segment zero. This
“feature” is used by system utilities. All other cases of forward functions being undefined result in a
fatal error; use EXTERNAL for procedures to be linked later.

» The disassembler canwmaope with broken pointers in a segmemocedure dictionaryUsually
undefined (external) procedures withvla zro (0) entry in the procedure table.

» The string parameters length check isvr@owarning, rather than an errofhis is because the implicit
copy at run-time will throv a un-time error of the string doesfit.

» The compiler nav accepts calls to the built-in EOF and EOLN functions with no parameters.

» The code generation for empty set constant has beenviedprti no longer throws an assert. The same
assert reealed that empty sets as a function parameter was not correctly being cast to the appropriate
type of set.

Version 0.3 (2010-Apr-25)
» Awarning is nav issued if a case statement containstherwise clause. %u can disable the
warning by using th€*$warning otherwise false*) control comment.

» The compile listing n@ includes the symbol table for each procedure and function.

» Abug has been fixed in the code that derefereces pointers to strings. It no longer tries to laod the whole
string onto the stack. The compilenmanderstands heto deal with string-typed fields on the right
hand side of dot (expr.name) expressions.

» A bug has been fixed where function parameters that were the names of functions that had no parameters
were not being called.

The compiler no longer issues duplicate label warnings. In some
cases it was issuing warnings about unused labels twice.

e The compiler nav understands the built-in COPMELETE, EOFEOLN, FILLCHAR, INSERT, POS,
UNITBUSY and UNITCLEAR functions and procedures.

» The compiler no loger throws an assert if a procedure in segment zero is EXIT()ed.

» The compiler na correctly scopes enumerated constant definitions that are declared within the record
scopes.

» A bug has been fixed in the code that copied non-var string parameters into their local temporaries.
e Thw compiler nav understands hw to perform a non-local function return assignment.

» The compiler nav also accepts an integer value as the third parameter of fillalearthouh it is
documented to taka dar value.

» A bug has been fixed where constargatize aray indexes would cause an assert to fail. It turned out
that some optimizations were not checking the range of offsets, and creadlithdfisets.

» The compiler nav understands declaring and accessing arrays using multi dimension syntax.

» A number of error messages concerning forward declared typedden impreed; they are now
earlier and less cryptic.

» A bug has been fixed in the code generation of constant setg.afeheo longer all-bits-zero, but
instead contain the correct value.

» The compiler na only range checks the CHR parameter if requested. The UCSE2 wanpiler did
not range check CHR.

e The compiler nav checks parameter string lengths (declaredctual) for @erruns.

Reference Manual ucsd-psystem-xc 8

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

» The compiler nav understands about file™ variables.
» Theucsdpsyfl) command is n@ better at cleaning up its temporary files.

» The boolean comparison operators (=, <>, <=, <, >=, w)haveadditional code to cope with one side
or the other being a constant.

» A bug has been fixed in the way constant folding was handled around the FOR statimiest’

Version 0.2 (2010-Apr-19)
» The target for this release was to be able to compile the UCSI2 RPaical compiler from source. This
has been achied. It has yet to be determined if the compiler thus created actually functions.

 For differences between this cross compiler and the UCSDenatimpiler, see theucsdpsys_compil&)
man page. The most notable difference is that SIZEOF ésvackd, requiring the UCSD nat
compilers FROCEDURE SIZEOF to be renamed.

* Numerous bugs va keen fixed, usually in unexplored corner cases.

e The compiler nav understands the ABS, BLOCKREAD, BLOCKWRITE, CLOSE, CONCEXIT,
HALT, IDSEARCH, IORESUL, KEYBOARD, LENGTH, MARK, MOD, MOVELEFT,
MOVERIGHT, OPENNEW OPENOLD, PWROFTEN, READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SCAN, TREESEARCH, TRUNC, UNITREAD, UNITWRITE and WRITELN
built-in symbols.

» The STRING type has been turned into a built-in named type. This permits the unwise user to redefine
STRING to be a variable or a procedure or a function, or (for maximum confusion) a different type. This
is what shadw warnings are for.

e The compiler nav understands the CASE, FOR, REPBMNTIL and WITH statements.
e The compiler nav understands comparisons of CHAR values.

» The compiler nav accepts pointers as parameters to the ORD function. This seems oddly inconsistent, in
a language as intent as Pascal is, with the protection of the programmer from his own folly.

» The compiler nev understands set arithmetic and set comparisons.

« Itis now possible, using thacsdpsys_compile —-listingption, to obtain a compiler listing. The listing
contains the source code intexedwith the disassembled p-code. TH$L) control comment is
ignored.

e The compiler nav understands = and <> comparisons of multi-word values (arrays and records).

» The compiler can e be mnfigured to hae longer identifier (hame) lengths. It defaults to 8 for
compatibility and it still drops underscores.

» The compiler nev understands comparisons of packed arrays of char.

Version 0.1 (2010-Apr-01)
First public release.

Reference Manual ucsd-psystem-xc 9

Read Me(ucsd-psystem-xc) Read Me(ucsd-psystem-xc)

» The following built-in functions are understood: CHR, MEWML, ODD, ORD, PRED, SIZEOFSQR,
SUCC, TIME.

 All of the usual Pascal expresion operators are understood, althougtvayat atross the full range of
parameter types.

» The cross compiler can produce both little-endian codefiles and big-endian codefiles.

» A number of features from modern Pascal implementations are avilakleorstants, binary constants,
short-circuit booleanwluation, the address-of (@) operator,

» Most of the Pascal statement types aail@ble, including: BEGIN END, CASE (and OTHERWISE),
FOR, GOO (local), IF THEN (ELSE), NEW (including variant types), REFRBANTIL, WHILE,
WITH, WRITE, WRITELN. It is not yet possble to use non-local T&D

» Segment procedures can be created, and UNIT interfaces can be accessed from libilas; dbiderfiot
yet possible to compile UNITs. While F®NMARD procedures and functions are understood,
EXTERNAL procedures and functions are not yet supported.

 All of the UCSD Pascal data types are supported: ARRAcluding ACKED ARRAY), BOOLEAN,
CHAR, enumerated, FILE, INTEGER INTERACTIVE, pointers, REAL, RECORD (includ&gKED
RECORD), SETSTRING (including STRING[n]), subrange, TEXTThe long integer types are not yet
supported.

e The cross compiler understands mahthe UCSD Pascal constants, including: FALSE, MAX]NITL,
TRUE,

» The cross compiler is able to optimize most statements and expressions better than the Apple Pascal
native wmpiler Constant expressions are folded at compile time.

» There is aicsdpsys_dependd command, that can be used by your build system to scéi$for
filename*) include directies.

Version 0.0 (2006-May-22)
No public release.

Reference Manual ucsd-psystem-xc 10

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

NAME
How to build ucsd-psystem-xc

BEFORE YOU START
There are a f& pieces of software you may want to fetch and install before you proceed with your
installation of ucsd-psystem-xc.

Boost Library
You will need the C++ Boost Libranff you are using a package based system, you will need the
libboost-devepackage, or one named something very similar.
http://boost.org/

libexplain
Theucsd-psystem-xgackage depends on the libexplain package: a library of system-call-specific
strerror replacements.
http://libexplain.sourceforge.net/

GNU Groff
The documentation for thecsd-psystem-xgackage was prepared using the GNU 3ratkage
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time — if GNU Gfdfas been installed.

SITE CONFIGURATION
Theucsd-psystem-x@ackage is configured using tbenfigureprogram included in this distribution.

The configureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates thiakefileandlib/config.hfiles. Italso creates a shell scriginfig.status
that you can run in the future to recreate the current configuration.

Normally, you justcdto the directory containingcsd-psystem-$&source code and then type
% ./configure
...lots of output...
%

Runningconfiguretakes a minute or tww Whileit is running, it prints some messages that tell what it is
doing. Ifyou dont want to see the messages, configureusing the quiet option; for example,

% ./configure ——quiet

%

To compile theucsd-psystem-xgackage in a different directory from the one containing the source code,
you must use a version ofakethat supports th& PATH variable, such a&NU make Change directory to

the directory where you want the object files aretatables to go and run tieenfigurescript. The
configurescript automatically checks for the source code in the directorgahéigureis in and in.. (the
parent directory). If for some reasoanfigureis not in the source code directory that you are configuring,
then it will report that it canfind the source code. In that case, configurewith the option
——srcdir=DIR, whereDIR is the directory that contains the source code.

By default,configurewill arrange for thanale installcommand to install thecsd-psystem-xgackage’s
files in/usr/local/bin and/usr/local/man There are options which alloyou to control the placement of
these files.

——prefix= PATH
This specifies the path prefix to be used in the installation. Defaulisttocalunless otherwise
specified.
——exec—prefix= PATH
You can specify separate installation prefixes for architecture-specificifées Dehults to
${prefix} unless otherwise specified.
—-bindir=" PATH
This directory containsxecutable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.

Reference Manual ucsd-psystem-xc 11

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

Defaults to${exec_prefix}/birunless otherwise specified.

—-—mandir= PATH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-obbfaults to3{prefix}/manunless otherwise
specified.

The configurescript ignores most other arguments that yae @j use the-—help option for a complete
list.

On systems that require unusual options for compilation or linking thatttepsystem-xgackage'’s
configurescript does not knw about, you can ge configureinitial values for variables by setting them in
the ewvironment. InBourne-compatible shells, you can do that on the command lmtik

$ CXX="g++ —traditional’ LIBS=-Iposix ./configure

...lots of output...

$
Here are thenakevariables that you might want toverride with environment variables when running
configure

Variable: CXX
C++ compiler program. The defaultds+.

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults tolémgymmon
to useCPPFLAGS=-I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to installds. Thedefault isinstall if you have it, cp otherwise.

Variable: LIBS
Libraries to link with, in the form-| foo—I bar. Theconfigurescript will append to this, rather
than replace it. Itis common to uslBS=-L/usr/local/lib to access other installed
packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so theriHee
included in the next release.

BUILDING UCSD-PSYSTEM-XC
All you should need to do is use the
% make
...lots of output...
%
command and ®&it. Whenthis finishes you should see a directory cablédcontaining seeral programs.

If you hare GNU Groff installed, the build will also createstc/reference.pfle. Thiscontains the
README file, this BUILDING file, and all of the man pages.

You can remee the program binaries and object files from the source directory by using the
% make clean
...lots of output...
%
command. @ remove dl of the abwe files, and also renve the Makefileandlib/config.handconfig.status
files, use the
% make distclean
...lots of output...
%
command.

The file etc/configuein is used to createonfigureby a GNU program calledutoconf You only need to
know this if you want to regenerat®nfigureusing a newer version afutoconf

Reference Manual ucsd-psystem-xc 12

Build(ucsd-psystem-xc) Build(ucsd-psystem-xc)

TESTING UCSD-PSYSTEM-XC
Theucsd-psystem-xgackage comes with a test suiti@ run this test suite, use the command
% make sure
...lots of output...
Passed All Tests
%

The tests ta&a ew ®conds each, with aievery fast, and a couple very globut it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests
should appear at the end of the make.

INSTALLING UCSD-PSYSTEM-XC
As explained in th&ITE CONFIGURATIONection, abee, the ucsd-psystem-xgackage is installed
under thdusr/localtree by dedult. Usethe——prefix= PATH option toconfigureif you want some other
path. Morespecific installation locations are assignable, use-tinelp option toconfigurefor details.

All that is required to install thecsd-psystem-xgackage is to use the

% make install

...lots of output...

%
command. Contrabf the directories used may be found in the firgt fimes of theMakefilefile and the
other files written by theonfigurescript; it is best to reconfigure using tbenfigurescript, rather than
attempting to do this by hand.

GETTING HELP
If you need assistance with thesd-psystem-xgackage, please do not hesitate to contact the author at
Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version numbar lgy the
% ucsdpsys_compile -V
ucsdpsys_compile version 0.11.D001
...warranty disclaimer...
%
command. Pleas#o not send this example; run the program for the exact version number.
COPYRIGHT

ucsd-psystem-xeersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsd-psystem-xgackage is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

It should be in th&ICENSEfile included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 13

Internals(1) Internals(1)

NAME
Factory factory factories — Abandon all floof control Ye who enter here

ABSTRACT
In mary cases, allegedly OO code is still highly procedural and imperyatith little advantage taken of
the possibilities presented by inheritance and virtual methods. This talk is abgatidglfow of control
to an unknown future, manufacturing objects that in turn manufacture more objects, of various class
relationships. Whis this useful? Hw do you follow the program logic, especially if the classegehd
even been written yet? Hg come the combinatorial explosion doggnake it untestable? Comalong
and tale a tip down the factory**n rabbit hole, a warrerveel layers deep, inside a compiler.

INTRODUCTION
There is a particular technique used in the ucsd-psystem-xc project to construct and manipulate Abstract
Syntax Tree (AST) representations of the Pascal program. Rather than having the tree operations be
implemented by procedural code external to the tree, the manipulations are performed by the tree nodes
themselves.

A design goal was to be able to re-use the grammar for the Pascal language, so that other static analysis
tools could also be written, but having the grammar and symbol table handling remain in common library
code. Thiscomplicates things, if we are going tovkahe tree nodes performing all the work, because this
would seem to imply thatvery tree node would include the methods necessary to perform all tasks and re-
uses of the grammaHappily, this is not the case.

This paper is an extension of the eari@mpiless and Factoriegaper.

THE VIRTUAL KEYWORD
The ley mncept here is thertual keyword in C++. A virtual method is one that canveadfferent
implementations in different deed dasses. Thudpr our AST node to perform a different operation, it
must be a different deséd dass.

Some Revision
Long, long ago, there was no C++. Examples of AST representations dating from then wouldveften ha
declarations lik this:
struct expr_t

{
int kind;
union
{
int value;
struct
{
struct expr_t *lhs;
struct expr_t *rhs;
}ps
}us
2
Manipulating these trees wouldvislve a function such as this:
int
expr_evaluate(const struct expr_t *ep)
{

switch (ep—>kind)

case CONSTANT:
return ep—>u.value;

case PLUS:

return expr_evaluate(ep—>u.p.lhs)
+ expr_evaluate(ep—>u.p.rhs);

Reference Manual ucsd-psystem-xc 14

Internals(1) Internals(1)

case MINUS:
return expr_evaluate(ep—>u.p.lhs)
— expr_evaluate(ep—>u.p.rhs);

etc
}
}
Each time you wanted to add annkind of expression node, you had to visit each of these functions, and

add another switch case. This can become an exgemagintenance problem, and also lead to version
control bottlenecks for the ddopment team.

In order to be able to add code in the future, but nee leese problems, it is necessary to split the problem
into pieces, using pointers to functions:
expr_evaluate(const struct expr_t *ep)

{
}

This means our struct declaration changed as well
struct expr_t

return (*ep—>evaluate_method)(ep);

{
int (*evaluate_method)(const struct expr_t *ep);
union
{
int value;
struct
{
struct expr_t *lhs;
struct expr_t *rhs;
}ps
}u;
h

Notice, in particularthat thekind member is ne gone, replaced by one or more function pointers. In
practice, this tends to be a pointer to a struct full of function pointers, one for each task, because this
simplifies the creating of meAST nodes.

All of which means that our actualauation comes in separate pieces:

int
expr_constant_evaluate(const struct expr_t *ep)
{

return ep—>u.value;
}
int
expr_plus_evaluate(const struct expr_t *ep)
{

return expr_evaluate(ep—>u.p.lhs)

+ expr_evaluate(ep—>u.p.rhs);

}

The actual implementation wouldveathese in separate compilation units. viNibiat we hae $lit this up,
it would also be possible to davay with the union, andnalloc AST nodes of the appropriate size.

If anyone has done this manualipu will know that there is a lot of machinery that needs to be kept in
sync. Muchof this machinery is done for you by C++, and it also adds some rigor to the types of nodes,
avading the numerous type casts required when doing the same thing marntellg++ could would

look something lik this:

Reference Manual ucsd-psystem-xc 15

Internals(1) Internals(1)

class expression

{
public:

virtual int evaluate(void) const = 0;
2

and the implementations
class expression_plus:
public expression

{
public:
int
evaluate(void)
const
{
return lhs—>evaluate() + rhs—>evaluate();
}
private:
expression *lhs;
expression *rhs;
%

The ley thing to notice is that we replaced #tiad member with a “vtable”, and switches kind with
virtual methods.

Flow Of Control
Once all of the machinery is in place, adding & kimd of expression AST node simply means deriving a
new class, and implementing the appropriate methods, suetakgtein the aboe example. Ifyou are a
new devdoper on the team, and you ditleée the machinery unfold, and implemented the firgtdasses,
just haw the code actuallyeachesyour virtual method can be a bit of a mystery.

The first thing to remember is whatiatual method is. It is a type-based dispatch mechanism. There
mary only be a single call to that method in the entire program, and yet there could be tens or hundreds of
implementations of that method. There is no voodoo here, no magic. If it were done long-hand, as in the
first example, confusion rarely arises. Just think of it as the same thing, only distributed differently
amongst the source files.

The second thing to remember is that you oftent care how the code is called, because that mechanism
has already been detiged. Whetflow of control does get to you, all you care about is getting your bit
right.

Testability
Is using a virtual method inherently morefidi@illt to test than the original C implementation? ybeth
have the same code, doing the same jobs, the code is merely distributed amongst the source files differently.
S0, no, the testing burden is unchanged. Do not neidiekC++ verbosity for “more stifo test”, and
remember that C++ igeryverbose.

Quite possiblythe separation of functionality by class means that you candneater confidence that you
will not unintentionally break something else in the file, because you argemodditing the same files.

The Source Code

This concept may be found the thesd-psystem-xsource code in thigo/expression.h file, and its
derived dasses may be found in thie/expression/ derived.h and

t ool /expression/ deri ved.h files (the directory hierarghmirrors the class hierargh Theparser
can be found in thib/pascal/grammar.y file.

THE FACTORY CONCEPT
A factory in this sense is a function that returns mestances of a class. Think of a parser that reads text,
parses it into expressions, and returns a pointer to the abstract syntax tree representing the parsed

Reference Manual ucsd-psystem-xc 16

Internals(1) Internals(1)

expression. Thigs an example of a factory.
Imagine that our (vastly simplified) yacc grammar looked fiks:

expr
: NUMBER
{
$$ = constant_expr_factory($1);
}
| | DENTIFIER
{
$$ = name_expr_factory($1);
}
| e xpr '+ expr
{
$$ = plus_expr_factory($1, $3);
}
| e xpr’'="expr
{
$$ = minus_expr_factory($1, $3);
}
For each kind of expression, wevea fctory that can build them for us. Whare not especially
complicated:
expr *
constant_expression_factory(int value)
{
return new expr_constant(value);
}

But why wouldn't we just put the same code into the grammar production {rules}? Because we wanted to
re-use the grammar.

VIRTUAL F ACTORIES
The grammar can be re-used by more than one translation task if we add a context object, and some virtual

methods:
expr

: NUMBER
{ $$ = ctx—>constant_expr_factory($1);

| | D}ENTIFIER
{ $$ = ctx—>name_expr_factory($1);

| e x;}:;r '+ expr
{ $$ = ctx—>plus_expr_factory($1, $3);

| e x;}:;r =’ expr
: $$ = ctx—>minus_expr_factory($1, $3);

And thectx variable is a pointer to
class translator

Reference Manual ucsd-psystem-xc 17

Internals(1) Internals(1)

{

public:
virtual expr *constant_expr_factory(int) = 0;
virtual expr *name_expr_factory(int) = 0;
virtual expr *plus_expr_factory(expr *, expr *) = 0;
virtual expr *minus_expr_factory(expr *, expr *) = 0;
etc

%

By deriving differentranslator classes, we can v me translator that implements a compitere
that implements a pretty prinf@ne that calculates cyclomatic complexity statistits,

The compiler translator creates expression tree nodes the&rhsnplementation that compiles the
expressions. Theretty printer translator creates different expression tree nodes ¥adnha
implementation that prints the expressions out. And other static analysis tools wattelnawn
implementations.

Testability
Does this mad programs that use this technique harder to test? The amount of code to be written is the
same, and does the same jobs. So, no, the testing burden is unchanged.

However, you hare the advantage that the parser is common to all of the tools, and so bug fixes to the parser
are inherited by all tools. Change once, testyavhere? Notuite: if you hach separate yacc files, all

with the same bug, you wouldveaio maken identical changes, and re-tedbols. Testing burden

unchangedbhut the probability of unintentionally dérging grammars becomes zero.

Flow Of Control
The need to understand thewlof control comes when the ddoper is testing a mederivation of the
translator class. Thgrammayand its connection to the translator context has already been written
and tested, all you need to do is test the newlywetdass. Yur test cases, then, museeise each of
the nev factory methods, one test for each of the expression productions,waraf fontrol will then enter
each of the factory methods.

The Source Code
This concept may be found the thesd-psystem-xsource code in thigh/translator.h file, and its
derived dasses may be found in theol /translator/ derived.h files.

FACTORY FACTORIES
The wheels of this context concept would appear to start to cdwdeh we consider assignment
expressions. Agrammar for a C-lik language could look likthis:

expr
- | DENTIFIER
{ $$ = ctx—>name_expr_factory($1);
| e x;}:;r =" expr
{ $$ = ctx—>assignment_expr_factory($1, $3);
| e x;}:;r '+ expr
i $$ = ctx—>plus_expr_factory($1, $3);

How does our name expression factory Wnehich side of the assignment it is on? At code generation

time, should it emit a load opcode or a store opcodie?bn’t know... yet. What we do knw is that loads
are much more likely than stores, so we initially generate expression trees that would perform loads.

But this just pushes the problem into #ssignment_expr_factory method. Inorder to figure out

Reference Manual ucsd-psystem-xc 18

Internals(1) Internals(1)

what kinds of assignment opcode to use, it would be necessary to figure out what kind of load opcode is
present, and generate the corresponding store
expression *
translator_compiler::assignment_expr_factory(expression *el, expression *e2)
{
const expr_load *testl =
dynamic_cast<const expr_load *>(el);
if (testl)
return new expr_store(el->get_operand(), e2);

const expr_array_load *test2 =
dynamic_cast<const expr_array_load *>(el);
if (test2)
return new expr_store_array(el->get_Ihs(), el->get_rhs(), e2);

yyerror("inappropriate assignment");
return new expression_error();

}

This makes me cringe. Those down-castehay alarm bells going df And all those getters so that AST
node prvates can be groped, ugh! But what altevets there? © answer that, les backtrack for a
moment. Ouwery first example can be re-written dikhis:

int

expr_evaluate(const struct expr_t *ep)

{

if (ep—>kind == CONSTANT)
return ep—>u.value;

if (ep—>kind == PLUS)
return expr_evaluate(ep—>u.p.lhs)
+ expr_evaluate(ep—>u.p.rhs);

if (ep—>kind == MINUS)
return expr_evaluate(ep—>u.p.lhs)
— expr_evaluate(ep—>u.p.rhs);

etc
}

The chain off statements iassignment_expr_factory is aswi t ch in disguise a type-based
dispatch in disguiseWe should be using a virtual method instead.

But in which class should we place the virtual method? Clgaarn't inside thdranslator class,
since we tried it there already¥he type-based dispatch is based on the expression type, and that is where
the virtual method Vies, in theexpression class:

expr: expr '=' expr

{
}

No, no, no, that cahbe iight: thectx object doesn’get ary chance to intersne. Excepthat it does:
when it created the left hand side in the first place.

By creating, saya compiler specific “load” AST node, it also created the assignment factopyatiehe
same object. There is no way a pretty printer assignment objectaitbe aeated by a compiler load
object (unless you deliberately code it that way).

$$ = $1->assignment_expr_factory($3);

Note, too, that the error-prone down-castsganee as is he need to grope anyosetivates. Andthe code

Reference Manual ucsd-psystem-xc 19

Internals(1) Internals(1)

is fastertoo, by eliminating the si@ down-casts and multiple tests.

The sharp-eyed reader will\verpticed that we ha amitted the error case. What happens when it goes
wrong? Theeasiest way is to kra the common base classays emit an error complaining about an
inappropriate assignment, unlesgmidden.

expression *

expression::assignment_expr_factory(expression *, expression *)
yyerror("inappropriate assignment");
return new expression_error();

}

In summaryour name_expr_factory method manufactured an object that, in turn, contains an
assignment_expr_factory method, used to manufacture more AST nod#s.row havea factory
factory.

Testability
My head is starting toxplode. Surelynowthere are combinatorial effects on testing!

WEell, yes and no.Yes, programming languages by definition are capable of combinatorial effects when it
comes to all the ways you can put together different expressions to build different programs; that is
unchanged, compilers nekbuds of testing.

And, no, the factory factories do not making the testing buraesey Theg are, after all, implementing the
same thing, often with the same code, albeit distributed differently amongst the classes.

Flow Of Control
If 'm a developer adding a ne type of assignment to an existing complier implemented this eayto |
know when eecution will reach my shiypnew expression classissignment_expr_factory
method? WlI, the same way you wouldewhen it was imperate cde: write a test with that kind of
assigment in it, and hand it to the pardeemember: you arentesting the parser part of the code, only
your nav assignment type (class).

The Source Code
This concept may be found the thesd-psystem-xsource code in thig/expression.h file, and its
tool-specific dewed dasses may be found in theol /expression/ deri ved.h files.

FACTORY FACTORY FACTORIES
Now we turn our attention to theame_expr_factory method. It5 been trying to look all innocent
and inconspicuous.
expression *
translator_compiler::name_expr_factory(const char *name)
{
symbol *sp = lookup(name);
if (Isp)
{
yyerror("name unknown");
return new expr_error();

}

const symbol_extern *testl =
dynamic_cast<const symbol_extern *>(sp);
if (testl)
return new expr_load_extern(sp);

const symbol_static *test2 =
dynamic_cast<const symbol_static *>(sp);
if (test2)
return new expr_load_static(sp);

Reference Manual ucsd-psystem-xc 20

Internals(1) Internals(1)

const symbol_local *test3 =
dynamic_cast<const symbol_local *>(sp);
if (test3)
return new expr_load_local(sp);

yyerror("can’t use nhame here");

This is another example of a type-based dispatch in disguise. But where does the virtual method belong?
Clearly, not in thetranslator class or deviative, we dready tried that. Instead, we implement it in the
symbol class, as follows:

expression *

translator::name_expr_factory(const char *name)

{
symbol *sp = lookup(name);
if (Isp)
{
yyerror("name unknown");
return new expr_error();
}
return sp—>name_expr_factory();
}

We noved thename_expr_factory into thetranslator base class, because it issnialentical
across all devied dasses, because it no longer needs toviamut compiler-specific classes.

As in the previous section about assignment expressions: doing symbol accesses this way means that the
advantages are the same, the testing burden unchanged, and the error handling is the same.

In summarythetranslator::name_expr_factory method looked up symbol object that, in
turn, contains aame_expr_factory method, used to manufactuggpression AST nodes, that in
turn containassignment_expr_factory methods, used to manufacture mexpr AST nodes.We
now havea factory factory factory.

The Source Code
This concept may be found the thesd-psystem-xsource code in thigd/symbol.h file, and its

derived dasses may be found in thie/symbol/ derived.h andt ool /symbol/ derived.h
files.

FACTORY**4

Have you thought about variable scopes as€al? Byhaving different scopes f@rogram s and
function s (because their variables are accessed by different opcodes) whewaxiable is declared,
you ask the currersicope to manufacture a nesymbol instance that... you get the idea.

The Source Code
This concept may be found the thesd-psystem-xsource code in thig/scope.h file, and its devied
classes may be found in thie/scope/ deri ved.h andt ool /scope/ deri ved.h files.

COPYRIGHT
ucsd-psystem-xeersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsd-psystem-xarogram comes with ABSOLUTBLNO WARRANTY; for details see the LICENSE
file in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

Reference Manual ucsd-psystem-xc 21

Internals(1)

AUTHOR
Peter Miller
/\/*

Reference Manual

E-Mail:
WWW:

pmiller@opensource.grau
http://miller.emu.id.au/pmiller/

ucsd-psystem-xc

Internals(1)

22

ucsdpsys(1) ucsdpsys(1)

NAME
ucsdpsys — UCSD p-System launcher

SYNOPSIS
ucsdpsyq option..]
ucsdpsys -V
DESCRIPTION
Theucsdpsyprogram is used to start an instance of the UCSD p-System virtual machine, providing it with

the necessary system volumes to function. This is done by wrappingstthesys_v(i) command,
possibly performing disk image operations before and after viacsapsys_digk) command.

OPTIONS
The following options are understood:

-a

——apple Execute the virtual machine in Apple compatibility mode, initialized using the same addresses as
the original Apple][p-System.

-b filename

——batch=filename
Start the virtual machine in batch mode. Input is read fitemame output is written to the
standard output (unlesx is used). If “~" is specified, the standard input is used.

—f filename

——forget=filename
Access thdilenameas a read-write disk image, but changes to the disk imagevarenmiten
back to the file and are forgotten when the virtual machine stops. If a directory is specified, a
temporary disk image is created witbsdpsys_mkft), and the contents of the directory are read
into it before the virtual machine starts.

-9
——debug
Run the virtual machine in debug mode.
-N
——no-system
This option may be used tead constructing a system disk imageor the system to boot, you

must provide a system disk using one ofther —f or —-w options. Ary —Soptions will be
ignored.

—-n filename

——name=filename
Uses the gien filenameas the recutable to launch. Defaults 8 STEM.PASCALTf not
specifed. Thisfile may be on anof the volumes, although it is traditional for it to be on the
SYSTEM:volume.

—P release-name

——p—machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and tkalable opcodes). This defaults to “Il.1" if not set.

-r filename

—-read=filename
Access thdilenameas a read-only disk image. If a directory is specified, a temporary disk image
is created, and the contents of the directory are read into it before the virtual machine starts.

Reference Manual ucsd-psystem-xc 23

ucsdpsys(1) ucsdpsys(1)

—Sdirectory

——systemadirectory
This option gie a drectory to be searched for systeites. Thisoption may be gien more than
once. Ifthis option is not gien, the files installed by thaécsd-psystem-anducsd-psystem-vm
packages will be used, if present.

-T
——trace Trace a&ecution of opcodes by the virtual machine.
-t filename

——trace—file=filename
Write the execution trace to the gen file. If “~" is given as hefilename the trace will be
written on the standard output.

-V
—-version

Print the version of thecsdpsygrogram being>ecuted.
-w filename

——write=filename
Access thdilenameas a read-write disk image. If a directory is specified, a temporary disk
image is created, and the contents of the directory are read into it before the virtual machine
starts, and then read back out into the directory when the virtual machine stopes.

—X

——xterm
Start arxterm(1) for CONSOLE:andSYSTERM: Especially useful when using the debugger
and its messages are output to the standard output and stderr.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsysommand will exit with a status of 1 onyagrror. Theucsdpsysommand will only exit
with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_ V(i)
UCSD p-System virtual machine

ucsdpsys_digk)
manipulate UCSD p-System disk images.

ucsdpsys_mkfs)
create UCSD p-System disk images.

COPYRIGHT
ucsdpsywersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsyprogram comes with ABSOLUTELNO WARRANTY; for details see the LICENSE file in
the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 24

ucsdpsys_assemble(1) ucsdpsys_assemble(1)

NAME
ucsdpsys_assemble — UCSD p-System cross assembler

SYNOPSIS
ucsdpsys_assembleoption...]filename

ucsdpsys_assemble —VERSion

DESCRIPTION
Theucsdpsys_assemlpeogram is used to assemble lowdamachine source code into UCSD p-System
code fles. Theresult is not gecutable, it must be linked to a program in order toxeewged.

OPTIONS
The following options are understood:

-A name

——host=name
This option may be used to specify the machine architecture from the command line, as if there
was a.arch” namé pseudo opcode at the start of the souitee Thereis an equialent
option for theucsdpsys_compil¢) command.

—| directory

——include=directory
This option is used to specify an include file directory to search. This option mayehargire
than once.

-J directory

—-view-path=directory
This option is used to specify a directory to append to thve pégh. Thisoption may be gien
more than once.

-L filename

——listing=filename
This option may be used to nominate a file teethle assembler listing-or each line of source
text the listing includes the address of the opcodes (in hex), the data bytes of the opcodes (in hex),
and the corresponding source line.

-o filename

——output=filename
This option may be used to specify the code file the result s are written to. If not specified, the
extension is remeed form the source file (if any) and acbde " extension is added.

—P release-name

——p—machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and tkalable opcodes). This defaults to “Il.1” if not set.

-V

—=version
Print the version of thecsdpsys_assemhpeogram beingxecuted.

All other options will produce a diagnostic error.

Reference Manual ucsd-psystem-xc 25

ucsdpsys_assemble(1) ucsdpsys_assemble(1)

EXIT STATUS
Theucsdpsys_assemltemmand will exit with a status of 1 onyagrror. Theucsdpsys_assemble
command will only exit with a status of 0 if there are no errors.

EXPRESSIONS
This section details the arithmetic expressions understood by the assdmbéareral, these are the same
expression forms used by the UCSD watissembler; anexceptions will be noted.

Addition
You can add tw integer values using the usual plas‘(+” e2) operator.

Subtraction
You can subtract tev integer values using the usual mine$‘(-" e2) operator.

Multiplication
You can multiply two integer values using the usual s&it‘(** " e2) operator.

Division
You can divide tvo integer values using the usual slash“(” e2) operator Itis an eror if a division
by zero is attempted.

Modulo
You can find the remainder of the division ofdwnteger values using the usual perceit'¢s e2
operator It is an eror if a modulo by zero is attempted.

Unary Minus
You can ngae an expression using the minuséf’ operator.

Unary Plus
You can unary plus an expression using the plug)“(operator.

Grouping
Because parentheses are used to indicate other things in most addressing formats, parentheses can’

used for grouping. Insteamhgle brakets are used: the expressions loolelik expr >” and this may
take sme getting used to.

Bit-Wise Not

You can bit-wise AND an integer value using the tildéeX’ operator.
Bit-Wise And

You can bit-wise AND tvo integer values using the ampersarell'& e2)” operator.
Bit-Wise Or

You can bit-wise OR tw integer values using the vertical bag1(e2" operator.

Bit-Wise Exclusve-Or
You can bit-wise exclusie-or two integer values using the cara¢I(e2)” operator.

Equal
You can male equality comparisons, using thee’ = e2” operator.

Not Equal
You can male inequality comparisons, using thel(<> e2” operator.

Less Than
You can male less than comparisons, using thel‘(t e2” operator Not present in the UCSD
native assembler.

Less Than Or Equal
You can male less than or equal comparisons, using teé <& e2)” or “(el.le e2” operator Not
present in the UCSD naé assembler.

Greater Than
You can male greater than comparisons, using thel‘gt e2” operator Not present in the UCSD
native assembler.

Reference Manual ucsd-psystem-xc 26

ucsdpsys_assemble(1) ucsdpsys_assemble(1)

Greater Than Or Equal
You can male greater than or equal comparisons, using th&é*€ e2” or “(el.ge e2)” operator.
Not present in the UCSD nedi assembler.

Operator Precedence
The precedence of the various operators is the same as for Pascal.

DIRECTIVES
This section details the pseudo-ops understood by the assemtdeneral, these are the same pseudo-ops
used by the UCSD na® assembler; anexceptions will be noted.

.arch
The.arch pseudo-op can be used to change the microprocessor architecture being assembled. (Not
present in the UCSD naé assembler.)

.arch" namé
Thenameof the machine must be a quoted string constant. The names airesestsive.

p-code-le
Assemble p-code assemblittle endian. This is the default, if narch is specifed. Thedefault
radix will be set to decimal.

p-code-be
Assemble p-code assembleig endian. The default radix will be set to decimal.
6502
Assemble Mos Technologies 6502 assembler (Apple][, KIM-1). The default radix will be set to
hexadecimal.
.asciz

This pseudo-op is similar to thascii pseudo-op, except that ismalys emits a NUL (0x00) character
after the string.

.else
See.if for documentation.

.end
Used to denote the physical end of an assenflinput beyond this point is ignored. It is an error if this
directive is not present.

.endc
See.if for documentation.

.endif
This is a synonym of thendc pseudo-op.

.endm
See.macro for documentation.

.error
This pseudo-op is used to output a message to the standard error gtre@mmon use of this direet is
to provide a diagnostic announcement of a rejected or erroneous macro call or to alert the user to the
existence of an illgd set of conditions specified in a conditional assembly.

The values of all the expressions are concatenated tog#tiien want spaces between them, use a
constant string expression.

.print "Oops."
This pseudo-op was inspired by the PDP-11 pseudo-op of the same name, but it is not quite identical in
operation.

.func
This pseudo-op identifies a function that returnalae. o wards of space to be used for the function
value will be placed on the stack aftelygrarameters. Afunc is ended by the occurrence of a new
func ,.proc ,or.end .

Reference Manual ucsd-psystem-xc 27

ucsdpsys_assemble(1) ucsdpsys_assemble(1)

func identifier[, expression]
Whereexpressionindicates the number of words of parameters expected by this function. The default is 0.

Symbols defined before the first procedure or function are preservedidn@umbols defined within the
previous procedure or function are dropped. Thisg@ch function a “clean slate” for its local symbols.

The.if pseudo-op is used to conditionally assemble portions of the source code.
JIf condition

.endc
It is also possible to specify afsepart.
JIf condition

.else

.endc
Conditionals can be nested.

Theconditionmust &auate to either an integer (false is zero, true ysram-zero value), or a boolean
value.

.include
This pseudo-op is used to include another source file at this position in the source file.

.macro
The.macro pseudo-op is used to define macro-instructions. These can be used to group opcodes
togetheyrdong with appropriate parameters.
.macro pop
pla
sta %1
pla
sta %1+1
.endm
It is possible to use a macro anywhere you would use a normal ofeadmeters are referenced using
%1, %32 etc

.print
This pseudo-op is used to output a message to the standard error stre@mmon use of this direet is

to provide a diagnostic announcement of a rejected or erroneous macro call or to alert the user to the
existence of an illgd set of conditions specified in a conditional assembly.

The values of all the expressions are concatenated tog#tiien want spaces between them, use a
constant string expression.

.print "Oops."
This is not treated as a fatal error.

This pseudo-op was inspired by the PDP-11 pseudo-op of the same name, but it is not quite identical in
operation.

.proc
This pseudo-op identifies a procedure that returnsaheey A.proc is ended by the occurrence of a new
.proc ,.func ,or.end .

.proc identifier[, expression]

Whereexpressionindicates the number of words of parameters expected by this routine. The default is 0.

Reference Manual ucsd-psystem-xc 28

ucsdpsys_assemble(1) ucsdpsys_assemble(1)

Symbols defined before the first procedure or function are preservedidn@umbols defined within the
previous procedure or function are dropped. Thisg@ach procedure a “clean slate” for its local symbols.

.radix
The.radix pseudo-op can be used to change the default radix used by the ass@vablpresent in the
UCSD natve assembler.)

sradix number

Thenumbemust be between 2 and 3%ou may need to use one of the explicit number forms (next
paragraph) to cope with an unknown or undefined default radix.

You can alvays get a decimal number by using a dotquffix. You can alays get a hexadecimal number
by using aH suffix (if the default radix is less than 19), or a C-stteprefix (if the default radix is less
than 34).

As with the cross compilgyou can also specify a number with a radix and h&spréfix. For example,
an octal number could be writt@Ź ; other radixes are also possible, sucia#42 . The radix base
before the hash#] is dways decimal, no matter what the default radix has been set to.

Note that the (implicit)arch pseudo-op also sets the default radix.

.sbttl
The.sbttl pseudo-op can be used to change the seconadines of page title of the assembler listing.

.shttl text

The text does not need to be quoted, and it may contain spaces. The effect of this opcode will be seen on
the next page heading printed. It is not possible to set both the title and the sub-title of the first page.

title
The title pseudo-op can be used to change the first ofitves of page title of the assembler listing.

title text

The text does not need to be quoted, and it may contain spaces. The effect of this opcode will be seen on
the next page heading printe@io st the heading of thierst page, this directe nust be the first line in the
file.

SEE ALSO
ucsdpsys_compilt)
A cross compiler from Pascal to UCSD p-System codefiles.

ucsdpsys_disassem{le
disassemble a UCSD p-System code file

ucsdpsys_lin|d)
UCSD p-System codefile linker
COPYRIGHT
ucsdpsys_assembilersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_assemlpeogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 29

ucsdpsys_charset(1) ucsdpsys_charset(1)

NAME
ucsdpsys_charset — UCSD p-System font builder

SYNOPSIS
ucsdpsys_charset —ginput-text-file[output-binary-file]]
ucsdpsys_charset -V
DESCRIPTION
Theucsdpsys_charserogram is used to decode and encode font characters for use as the
SYSTEM.CHARSETile.

OPTIONS
The following options are understood:
-d
——decode
Decode the binary font file into a text file which can be edited.
-e

——encode
Encode a text file representation of the glyphs of the font into the binary for used for the
SYSTEM.CHARSETile.

=i

—=include
Encode a text file representation of the glyphs of the font into C code for an include file to define
an array of bytes of data.

-V

—-version
Print the version of thecsdpsys_charsgrogram beingecuted.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_charsebmmand will exit with a status of 1 onyagrror. Theucsdpsys_charsebmmand
will only exit with a status of O if there are no errors.

COPYRIGHT
ucsdpsys_charseersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_charserogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 30

ucsdpsys_compile(1) ucsdpsys_compile(1)

NAME

ucsdpsys_compile — compile Pascal source to UCSD p-System code file

SYNOPSIS

ucsdpsys_compilg option..] filename
ucsdpsys_compile -V

DESCRIPTION

Theucsdpsys_compilerogram is used to compile Pascal source code to UCSD p-System code files.

OPTIONS

The following options are understood:
—A name

——host=name
This option may be used to specify the machine architecture from the command line, as if there
was a(*$feature host name) comment at the start of the sourie.f Thereis an
equiaent option for thaicsdpsys_assemfil¢ command.

—f feature-namevalue

——feature=feature-namevalue
Set the selected feature to theegiboolean alue. (Listof features may be found bal)

—f feature-name

——feature=feature-name
Set the selected feature to true.

—f no-feature-name

——feature=nofeature-name
Set the selected feature to false.

—| directory

——include=directory
This option is used to specify an include file directory to search. This option mayehargire
than once.

-J directory

—-view-path=directory
This option is used to specify a directory to append to thve pégh. Thisoption may be gien
more than once.

-L directory

——library-path= directory
This option may be used to add another directory to the list of directories to be searched for
library codefles. Thisoption may be used more than once, directories will be searched in the
order specified.

——listing=filename
This option maybe used to name a file to accept the compiler listing. By default, no listing is
produced. Thdile name “~" is understood to mean the standard output. The listing will consist
of the source code interheal with the disassembled p-code.

——long-addresses
This option may be used to emit addresses in into the listinghg@m ‘@nn’ (i.e.the segment
number procedure numbeend procedure éfet). Thisis the same format used by the
ucsdpsys_cfit) ——trace option, making it easier to cross reference from the trace back into the

Reference Manual ucsd-psystem-xc 31

ucsdpsys_compile(1) ucsdpsys_compile(1)

compiler listing. Has no effect without the-listing option.
-ofilename

——output=filename
This option may be used to set the name of the outputlf defaults to the name of the source
file, with the sufx replaced with ‘code ”

—P release-name

——p—machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and tkalable opcodes). This defaults to “Il.1" if not set.
-V
—=version
Print the version of thecsdpsys_compilerogram being>ecuted.
-V
—-verbose
Verbose. Statisticabout the compilation are printed.
-W warning-namevalue

——warning=warning-namevalue
Set the selected warning to theegi boolean alue. (Listof warnings may be found b&lg

-W warning-name

——warning=warning-name
Set the selected warning to trueor example, use“Werror " to turn all warnings into fatal
errors.

-W no-warning-name

——warning=no-warning-name
Set the selected warning talde. Br example, use“Wno-shadow " to disable shadow
warnings.

-y
——grammar-trace

Turn on parse delgging. \éry verbose. Intendefibr compiler deelopers only.
All other options will produce a diagnostic error.

ENVIRONMENT VARIABLES
UCSD_PSYSTEM_XC_LIBRARY_RTH
This is a colon-separated list of directories to be searched for codefiles containing library UNIT
segments.

EXIT STATUS
Theucsdpsys_compileommand will exit with a status of 1 onyagrror. Theucsdpsys_compileommand
will only exit with a status of O if there are no errors.

SEE ALSO
ucsdpsys_assemkig
UCSD p-System cross assembfer multiple CPU types

ucsdpsys_disassemfle
A utility to disassemble UCSD p-System codefiles.

ucsdpsys_lin|d)
UCSD p-System codefile linker

Reference Manual ucsd-psystem-xc 32

ucsdpsys_compile(1) ucsdpsys_compile(1)

COPYRIGHT
ucsdpsys_compileersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_compilerogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 33

ucsdpsys_compile(1) ucsdpsys_compile(1)

DIFFERENCES
There are a number of differences between this cross compiler and the UCSD p-SystePestati
compiler.

Pdlicy
In developing the cross compilea number of design decisions had to be made. This section is more-or-
less hav to decide what to do in the interesting places.

» When you can, do static analysis. Finding bugs at compile time is better than finding bugs at run time, or
worse, not finding them.

» Evaluate constant expressions at compile time (no warning required). It makes for smaller code, and it
also allows more static analysis.

» Adding a n& feature is OK, but all mefeatures must issue a warning that theveattmpiler cant do
it, and all nev features need a (*$warning*) setting to turhtb& warning if the user is doing it on
purpose.

» Adding nev features for better ISO 7185:1990 Standard Pascal compliance is a good thing.

 If new features are so different thatylae disabled by default, and\eaa ¢$feature*) setting to turn
them on, the don’t need a warning as well.

» There is no need to produce code that is identical to that produced by ¥eemratiler If you can
produce better code, without changing the meaning, or the results, go for it.

» Short circuit booleanvaluations subtly break at last one of theabmlicies, in the case where function
calls within the conditions va sde efects. Wherwe have enough flav analysis to knuav if functions
have dde effects, we can issue warnings.

« Itis essential that parameters are pushed onto the stack identically tovteematiler, or system calls
will stop working. Thesame applies hoparameters are allocated space in the stack frame.

» There is more leniepdor variable allocations, especially temporary variables.

» There is some evidence, in the system utilities, of using wegidine aray indees to a&cess system
internals. Therés no need to try for backwards compatibility in this, and thus no need for identical stack
frame layouts, in order to presersack sizes for said weird gaive dfsets to continue to “work”.

» There is no need to reproduce watioompiler bugs, provided that theeally are bugs, and not mis-
features that programs relied on. This clause is last, because it shbaldsed very often.

At some point you are going to find dttiiat is FUBAR: document it (see below).

Cross Compiler
Itis called a cross compiler because, rather than generate awmte for the system the compiler is running
on, it instead generates code to be run on a different system; in this case the UCSD p-System. The code
must be meed across to bexecuted.

Theucsdpsys_compilg) program does not run nadly on a UCSD p-System, so it does notén be
invoked manually The cross compiler can exist in a modern softwaveldement tool chain, and can be
executed by build tools such asake1l).

You do rot have o havea working UCSD p-System in order to compile UCSD Pascal programs. This
makes it possible to bootstrap andCSD p-System “from scratch”.

Error Reporting
The error messages are vastly inyeth Whereer possible accurate location data is included in messages,
along with names and types.

The location of symbol declarations is tracked, so that errors relating to that symbol can refer back to the
declaration location.

If you hare gent the last 25 years writing C (or some other language witheGytikax) the compiler will
remind you wheneer it sees an equality (=) operator where there should be an assignment (:=) operator.
This is more helpful than “syntax error”. Some other C-isms are also diagnosed.

Reference Manual ucsd-psystem-xc 34

ucsdpsys_compile(1) ucsdpsys_compile(1)

Declarations
The values presented to CONST declarations mayyexgnession, provided itv@luates to a constant
value at compile time A non-constant will be an error (but not a syntax error).

When declaring array types, and integer subrange types, expressions within the declaration may be any
expression, provided tlyeevaluate to constant values at compile time.

Boolean Expressions
The cross compiler uses short-circwidlaation of booleanxgressions. & example, if the result of a
logical AND expression can be determined from the left-hand side (being false) the right-hand siete is ne
evduated. Similarlyif the result of a logical OR expression can be determined from the left hand side
(being true) the right-hand side isveeevaluated.

The cross compiler also makes use of the NFJ and EFJ opcodes that were present in the p-machine used by
Apple Pascal, but were v& generated by the Apple Pascal watompiler.

The UCSD natie compiler did not allev nested SEGMENT procedures and functions. It would emit a
“399 Implementation restriction” error if you did so. The cross compiler does wethia restriction.

Lexical Enhancements
It is possible to use hexadecimal notation for integer constanghdiiea leading dollar ($”) followed by
hexadecimal digits, in either case. This feature is common in modern Pascal implementations, but was not
present in UCSD Pascal.

It is possible to use binary notation for integer constantg Héneea leading percent ¢8) followed by
decimal digits. This feature is common in modern Pascal implementations, but was not present in UCSD
Pascal.

It is possible to use exponential notation for real constants. That is, numbers such as “1.2e6” are
recognized; exponents can bgaéve, too. Thisfeature is common in modern Pascal implementations, but
was ot present in UCSD Pascal.

Resewed Words
The following identifiers are reservedykvords in this compiler: OTHERWISE, SCAN, SEPARATE,
SIZEOF, WRITE and WRITELN. Thg were not reserved words in the UCSD vatiompiler.

In the case of SCAN, SIZEQOWRITE and WRITELN, this is because these functions do not fall into the
regular call grammarThe parameters of these calls are not simple expressionsieah@aption of not
being simple expressions, but need additional grammar support.

OTHERWISE was added to case statements, see tlvarregection of this man page.

SEPARATE is like EXTERNAL but there is no compiler support for this, yet; hegrehis keywords does
appear in UCSD p-System sources.

Inline Variable Declarations
It is possible to declare variables in-line with the code.
function sqrt(x: real): real;
var
result, diff: real;
begin
result :=x/2;
repeat
begin
var approx :=result — (sqr(result) — x) / (2 * result);
diff ;= abs(approx — result);
result := approx
end
until
diff < 1e-6;
sgrt ;= result
end

Reference Manual ucsd-psystem-xc 35

ucsdpsys_compile(1) ucsdpsys_compile(1)

Theapproxtemporary variable is created on-the-fly and the symbol is forgotten at the end of the enclosing
begin end scope. Thetorage it used is released, and may be re-use in ariatkebegin end

scope. Theepeat until statement is slightly different, variables declared in-line persist until the end
of the until condition, so that variables create inside the loop may be used to control the loop.

This feature was not present in UCSasPal. ltwas introduced to the cross compiler principally to verify
the temporary variable behavior required by sevite andfor statements.

Bit-wise Operators
The compiler has some extensions present in modern Pascal compilers, allowing bit-wise operations on
integers,

In addition to logical N expressions, the cross complier understands bit-wis€ &@ressions. The
have the same notation and precedence, but saknteger operand and the result is an integer.

In addition to logical AND expressions, the cross complier understands bit-wise Xgi&ssions. The
have the same notation and precedence, but ilstieger operands and the result is an integer.

In addition to logical OR expressions, the cross complier understands bit-wisgp@RBs@ns. Thehave
the same notation and precedence, bt iratieger operands and the result is an integer.

The bit-wise operators do not use short-circudtuation.

Labels and Goto
It is possible to hae ramed labels, not just numeric labeWarnings rather than errors are issued when a
goto statement is used.

If Statement
As mentioned in Boolean Expressions,\ahthe if statement uses short circuitigation for the control
statement.

If control expression is constant, only the code for thevaetdoranch is generated.

Case Statement
It is possible to place an OTHERWISE clause at the end of CASE statements. It will be used for all values
not matching one of the preceding case values.

Case values (to the left of the colon) may bgexpression, provided tlgesvaluate to constant values at
compile time.

Pahological uses of CASE statements that produce a huge code explosion are diagnosed, and a much more
informative e@ror message is produced than that of the UCSD p-Systeve aatnpiler.

The natve compiler generates XJP opcodes with the following talleya pointing backwards to each of
the cases (each is pog#). Thisrequires an unconditional branch around all of the cases to the XJP
opcode at the end. TlEbfeature short-case true*) control comment may be used toaese
this order This generates code that is slightly smalghtly faster and uses forward pointing self
relative pointers {.e. each is ngaive). While nggative ®lf-relative minters work correctly on the Klebsch
implementation, it isi’known if they work correctly on all p-machine implementations yteeould,

signed and unsigned subtraction are the same thing on twos-compliment machines).

Code Size
The natve UCSD p-System compiler was constrained in the amount of memory ivatabk for
generating code. Function bodies were limited to about 1200 bytes of code, and segments were limited to
about 28000 bytes total for all functions in the segment.

Theucsdpsys_compileé) command is able to generate segments as large as 65534 bytes, which is patently
overkill for running on a 64kB system, because you woultda'ale to load it into memorythe system

segments wouldbhaveleft enough room. Functions can be as large as you want, provigedll thiteinto

their sgment. Tuly huge procedures may run out of jump table entries, Veweecause there is no way

to increase the limit of 64.

The natve UCSD Pascal compiler also has a limit of 140 functions mgneat. Thisagain, was a
memory size constraint. The cross compiler carehp to 255 functions per segment (the limit of

Reference Manual ucsd-psystem-xc 36

ucsdpsys_compile(1) ucsdpsys_compile(1)

addressability) without difculty.

When possible constant expressions, or constant parts of expressionaluatedat compile time, and
inserted into the code as constants. This is usually less code thanvbeorapiler produces.

Control Comments
There are a number of control comments thaehmen added, to fine tune the operation of the cross
compiler All control comment names are cassensitve.

(*$b*) Synonym for (*$feature big-endian true*)
(*$d+*) Synonym for (*$feature debug true*)
(*$f) Synonym for (*$feature big-endian true*)

(*$featurename valug
This control comment is used to set a number of compiler feat¥oescan also control features
from the command line, using thé option. Thefeatures are:

big-endian [bool]
This control comment tells the compiler will produce big-endian p-code rather than the
default little-endian. Defaults to false.

chr-range-chechkool
This control comment is used to enable (true) or disable (false) the generation of range
checking opcode around CHR parameters. Defaults to false.

The range checks are only issued if this feature and the regntm-checkeature are
both true.

debug [bool]
This control comment marbe wsed to turn on (true) or foffalse) the generation of
break point (source code line) opcodes into the output. Defaults to false.

efj-nfj bool
This option may be used to control the use of EFJ and NFJ opcodes (used to optimize
some branch conditions) in the unlikely case wheng éheenot &ailable on your p-
Machine implementation. (The Apple p-machine has them, and so does the Klebsch p-
machine). Dedults to true, generate these opcodes.

extra-set-comparisorntsool
This option says to the LES POWR andTGPOWR opcodes. Theseere not present
in the original UCSD p-machine, and the compiler does not use them by default.

ignore-undefined-segment-zedvool
The compiler aliays checks for procedures and functions that were declared forward,
but were not later defined, and issues a fatal error for each such symbol. This option
tells the compiler to ignore procedures from segment zero that were declared forward,
but were not deéhed. Thisis only of use to system utilities. Defaults to false.

You can turn this on and bfor specific symbols. The setting takes effect for all
subsequent function and procedure declarations,yifateein segment zerolo dfect
all of them, you must put the control comment at the start of the file, or on the
command line.

inline-mathbool
This flag is used to enable or disable the use of built-in math and trig functions that
correspond to p-machine opcodes. These were not in the Apple Pascal p-Machine
(presumably) due to size constraints, but the p-machine spec still defines them.

This flag defaults to false, meaning yowéd use the TRANSCENDENTAL unit if
you want math functions.

This flag must be set prior to the PROGRAM or UNBykords, as it affects the
contents of the built-in symbol table.

Reference Manual ucsd-psystem-xc 37

ucsdpsys_compile(1) ucsdpsys_compile(1)

iocheckbool
This control comment tells the compiler whether or not to issue IOCHECK opcodes
after 1/0 statements. Defaults to true.

little-endian [bool]
This is the opposite of tHag-endianoption. Defults to true.

long-integer-constantsool
This option may be used to control constant folding of INTEGE&{pressions, and
the presence of long integer constants in the code. Defaults to true.

long-integer-extensiortsool
This option may be used to control the use of INTEGHERpcode extensions (ABS,
MOD, ODD, SQR) in the p-machine. Defaults to false (most p-machine
implementations dohhavethem).

maximum-name-lengtimteger
The maximum length of an identifieThe setting must be in the range 8..32767.
Defaults to 8, just as the UCSD natiPacal compiler did.

range-checkool
This control comment is used to enable (true) or disable (false) the generation of range
checking opcode around array indexing and some assignments. Defaults to true.

short-casdool
This control comment may be used to enable (true) or disable (false) the use of a
shorter technique to generate CASE statements. Defaults to false.

short-withbool
This control comment may be used to enable (true) or disable (false) the use of a
shorter technique to generate the implicit dot expressions required by WITH
statements. Wheenabled, if the base address in the WITH statement is simple
enough, not temporary pointer value is created. When disabled, or when the base
address expression is afently complicated, a temporary pointer variable is used, just
as in the UCSD naté compiler. Defaults to true.

tiny bool
This control comment may be used to enable (true) or disable (falsedls# the
built-in functions. This was a space-saving measure in the UCSzZermtnpiler.
Defaults to false.

underscore-significariiool
This control comment may be used to modify the significance or underscores in
identifiers (hnames). Setting to trueves ISO 10206 conforming behaviobefaults to
false, just as the UCSD ne¢i ompiler did.

userbool
This control comment may be used to enable (true) or disable (false) user-mode
compiling. Detults to true.

The use of (*$feature user false*) produces system programs which use a different set
of segments, and disable a number of other checks. This is used when compiling the
UCSD p-System itself, and a number of other system utilities.

Other feature names will elicit diagnostic error messages.
(*$g+*) Synonym for (*$warning goto false*)
(*$1-*) Synonym for (*$feature io-check false*)

(*$I filename*)
Synonym for (*$includdilenamé)

Reference Manual ucsd-psystem-xc 38

ucsdpsys_compile(1) ucsdpsys_compile(1)

(*$includefilename?)

(‘$r-)
(*$r+*)
(‘$t+)
(‘$u-")

Include the named source file at this point in the code. The filename may not contain white space
or comma characters.

Synonym for (*$feature range-check false*)
Synonym for (*$feature range-check true*)
Synonym for (*$feature tig true*)

Synonym for (*$feature user false*)

(*$warningname value)

This control comment is used to enable and disable the various warnings produced by the
compiler You can also control warnings from the command line, using\theption. The
warnings are:

address-obool
This enables (true) or disables (false) the warning the accompanies the use of the
address-of operatoiThe address-of operator “@" aloyou to talke the address of a
variable. Mostmodern Pascal implementatiorveahis, but the original UCSD p-
System Pascal did not. Defaults to true.

constant-branchool
This enables (true) or disables (false) warnings about constant control expressions for

IF, WHILE, REPEAT UNTIL, and CASE statements. Defaults to true.

binary-constanbool
The ability to write binary constants is a common feature of modern Pascal
implementations, hower they were not present in UCSDaBcal. Whetthis flag is
true, warnings are issued for binary constants (%01010) in the source code. When this
flag is false, binary constants are silently accepted. Defaults to true.

empty-parenthesdmol
This control comment may be used to enable (true) or disable (false) the warning that
accompanies the use of empty parentheses for function calls and declarations. This is a
C coder coping strategyDefaults to true.

error [bool]
When this flag is true, all enabled warnings are treated as compile errors. When this

flag is false, warnings do not cause the compilailo Defaults to false.

gotobool
This control comment may be used to enable (true) or disable (false) the warning is
issued when the G gatement appears in the source codevesihat goto is
considered harmful, it defaults to true.

hex-constanbool
The ability to write hexadecimal constants is a common feature of modern Pascal
implementations, hower they were not present in UCSDaBcal. Whetthis flag is
true, warnings are issued for hexadecimal constants ($XX) in the source code. When
this flag is false, hexadecimal constants are silently accepted. Defaults to true.

named-labebool
Named labels are a common feature in modern Pascal compilers \harethet
present in the nate wmpiler When this flag is true, named labels are complained
about. Wherihis flag is false, named labels are silently accepted. Defaults to true.

otherwisebool
This option controls whether or not to issue a warning when an OTHERWISE clause is

seen attached to a CASE statement. This is common in modern Pascal
implementations, but was not present in UCS3dal. Dediults to true.

Reference Manual ucsd-psystem-xc 39

ucsdpsys_compile(1) ucsdpsys_compile(1)

shadowbool
Shadowing occurs when declaring a symbol (function, varialdeblocks access to a
symbol declared earlieiThis almost akiays creates a maintenance problem. Set this to
true to issue warnings when symbols are shadowed, set this to false to silence shadow
warnings. Deéults to true.

set-comparisonisool
This warning is issued if set<set or set>set comparisons are mode. The UG8D nati
Pascal compiler did not accept such expressions.

silentbool
When this flag is set to true, no warnings at all are produced (this is\effeeti
warning master disable). When this flag is set to false, warnings are printed. Defaults
to false.

Other warning names will elicit diagnostic error messages.

ternary-expressiohool
This option is used to enable or disable warning when C-style ternary expressions (el?e2:e3) are
encountered. Dafilts to true.

unreachabl®ool
This option is used to enable or disable warning when unreachable statements are found by the
compiler Unreachable statement are those for which theviiadibexecution does no flw into
them from the previous statement, and statements that doveoa Isddel. Bydefault, this
warning is enabled.

Compiling Separate Units
The UCSD natie compiler is able to compile programs irveel separate compilation units, an either link
them with the system linkeor link them implicitly at runtime if thgare intrinsic units. Hw this was
accomplishedwlved over time, the cross compiler duplicates the 1l.1 implementation.

Some examples may help. This following code is what you may expect of a separate unit
(*$S+%)
separate unit frog;
interface

const fly_size = 10;

type wart_type = (green, brown);
procedure jump(dist: integer);
function warts: integer;

implementation

const pi = 3.14159;
type etc = 0..13;

procedure jump;
begin
end;

function warts;
begin

warts := 0;
end;

end.

The 11.1 compiler issues an error if the (*$S+*) was not present, the cross compiler will issue a warning.
The 1.1 compiler issued an error for the SEPARAEMoOrd, the cross compiler issues a warning.

Reference Manual ucsd-psystem-xc 40

ucsdpsys_compile(1) ucsdpsys_compile(1)

System units, ones that needed to access the system global variatdésvattd, used a different syntax.
This was neer documented anywhere, as far as | can tell.

(*$S+%)

($U-)

program pascalsystem;

separate unit frog;
interface

const fly_size = 10;

type wart_type = (green, brown);
procedure jump(dist: integer);
function warts: integer;

implementation

const pi = 3.14159;
type etc = 0..13;

procedure jump;
begin
end;

function warts;
begin

warts := 0;
end;

end;

begin
end.

The 11.1 compiler issues an error if the (*$S+*) or (*$U—-*) was not present, the cross compiler will issue a
warning. Thell.1 compiler issued an error for the SEPARAT&kord, the cross compiler issues a
warning.

In summary: omit the SEPARATEelaword.

FUBAR: Fouled Up Beyond All Recwery
See the “Policy” section, abe

The CHR built-in doesmactually do agthing. Thatmeans that chr(32767) has the same value on the
stack, it doesit’do a Gstyle value cast of masking its operand with QxNest of this brain damage can

be found by using the the (*$feature chr-range-check true*) control comment. Constant foul ups will be
found at compile time.

The ODD built-in doesiv’actually do anything, the same vales is on the stack, it dodsa’ Gstyle cast of
masking its operand with 1. The boolean branch opcodes just look at the bottom bit. Constant folding by
the compiler doeshhavethis behavior.

Reference Manual ucsd-psystem-xc 41

ucsdpsys_depends(1) ucsdpsys_depends(1)

NAME
ucsdpsys_depends — UCSD Pascal file depenydescker

SYNOPSIS
ucsdpsys_dependgoption..] filename..
ucsdpsys_depends —\Theucsdpsys_depengsogram is used to scan a Pascal source file for include
directives.

OPTIONS
The following options are understood:

—| directory

——include=directory
This option is used to specify an include file directory to search. This option mayehargire
than once.

-J directory

—-view-path=directory
This option is used to specify a directory to append to thve pégh. Thisoption may be gien
more than once.

-L
——one-per-line

The dependencies are usually written all on the one line. This option requests that each be on a
separate line.

-o filename

——output=filename
This option may be used to specify the outgat fDefaults to the standard output.

—P string
——prefix=string
The prefix to put at the start of the output line.
-r
——recursive
This option may be used to request remersnalysis. Becauseook1l) cascade direstes ae
being used, recurst analysis is rarely needed.
—-Sstring
——suffix=string
The sufix to put at the end of the output line.
-V
—=version
Print the version of thecsdpsys_depengsogram beingecuted.
All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_depengsmmand will exit with a status of 1 onyaerror. Theucsdpsys_dependsmmand
will only exit with a status of O if there are no errors.

SEE ALSO
ucsdpsys_compilt)
UCSD p-System Pascal compiler

Reference Manual ucsd-psystem-xc 42

ucsdpsys_depends(1) ucsdpsys_depends(1)

COPYRIGHT
ucsdpsys_dependsrsion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_depengsogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 43

ucsdpsys_disassemble(1) ucsdpsys_disassemble(1)

NAME
ucsdpsys_disassemble — disassemble a UCSD p-System code file

SYNOPSIS
ucsdpsys_disassembleoption..]filename
ucsdpsys_disassemble -V

DESCRIPTION
Theucsdpsys_disassemlleogram is used to
OPTIONS
The following options are understood:
-a
——no—address
Do not include addresses in the output. This makes automated testing easier when just a byte or
two is added, it stops the dibeing unhelpfully large.
-C
——comment
Add a descriptie mmment for each opcode.
-e
——extend
This option is used to include the structure of the codefile itself in the listing.
-ofilename

——output=filename
Write the output to the named file, rather than the standard output.

—P release-name

——p—machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and tkalable opcodes). This defaults to “Il.1" if not set.

-V

—=version
Print the version of thecsdpsys_disassemipegram beingxecuted.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_disassemidlemmand will exit with a status of 1 onyagrror. Theucsdpsys_disassemble
command will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_assemkig
UCSD p-System cross assembfer multiple CPU types
ucsdpsys_compilt)
A cross compiler from Pascal to UCSD p-System codefiles.
COPYRIGHT

ucsdpsys_disassemblersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_disassemigisogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

Reference Manual ucsd-psystem-xc 44

ucsdpsys_disassemble(1) ucsdpsys_disassemble(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 45

ucsdpsys_dencase(1) ucsdpsys wncase(1)

NAME
ucsdpsys_downcase — e@rt Pascal to lower case

SYNOPSIS
ucsdpsys_downcastlename..

ucsdpsys_downcase —-version
DESCRIPTION
Theucsdpsys_downcageogram is used to ceet Pascal source code from upper case to lower case. It

leaves the contents of string constants, character constants and comments unalteredgtiataton
program text to lower case.

Pascal is caséasensitve for all identifiers, so this is a safe thing to do. It will not change program
semantics.

Each file named on the command line will bevemted in place. If no files are named, the standard input
is corverted and written to the standard output.

OPTIONS
The following options are understood:
-V
—=version
Print the version of thecsdpsys_downcageogram beingecuted.
All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_downcasemmand will exit with a status of 1 onyagrror. Theucsdpsys_downcase
command will only exit with a status of 0 if there are no errors.

COPYRIGHT
ucsdpsys_downcasersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_downcageogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 46

ucsdpsys_errors(1) ucsdpsys_errors(1)

NAME
ucsdpsys_errors — UCSD p-System assembler error file builder

SYNOPSIS
ucsdpsys_errorg option..][infile [outfile]]]]
ucsdpsys_errors ——version

DESCRIPTION
Theucsdpsys_errorprogram is used to translate an assembler error file from its text for to its binary form,
and back again.

OPTIONS
The following options are understood:

-A name

—-architecture=name
This option is used to specify the architecture of the assembler in use.

—-d

——decode
This option is used to specify a translation from binary to text form is required. This can be
useful for r@erse engineering the text when all yowéds the binary form.

-e

——encode
This option is used to specify a translation from text to binary is required. The binary form is
used to simplify the error reporting code.

-V

—=version

Print the version of thecsdpsys_errorprogram beingecuted.
All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_errorsommand will exit with a status of 1 onya@rror. Theucsdpsys_errorsommand
will only exit with a status of O if there are no errors.

SEE ALSO
ucsdpsys_erro(s)
UCSD p-System assembler error file format

COPYRIGHT
ucsdpsys_errorgersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_errorprogram comes with ABSOLUTELNO WARRANTY; for details see the LICENSE
file in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 47

ucsdpsys_history(1) ucsdpsys_history(1)

NAME
ucsdpsys_history — UCSD Pascal notes and archaeology

DESCRIPTION
This document is an attempt to collect together historical information about the UCSD Pascal system.
Including who wrote it, notes about is various idiosyncrasies, anddiboot a p-System “from scratch”.

It may be that this information more properly belongs in Wikipedia.
[http://en.wikipedia.org/wiki/Ucsd_pascal] With an eyw#ods this, all sources are being annotated with
their URL.

ARCHAEOLOGY
This section ceers the historical period from 1977-ish, when UCSD Pascal project was initiated, to
1983-ish, when progress of languages and systems had basically left UCSD Pascal behind.

Predecessors
Urs Ammann, a student of Niklaus Wirth, originally presented a p-code in his PhD thesis — see Urs
Ammann,On Code Generation in a Pascal Compilgoftware Practice and Experience, Vol. 7, No. 3,
1977, pp. 391-423, from which the UCSD implementation wasatkrihe Zurich Pascal-P
implementation. The UCSD implementation changed the Zurich implementation to be “byte oriented”.
[15] [16]

Using a tool deeloped in response to the SCO kerfuffle
(http://en.wikipedia.org/wiki/SCO-Linux_contversies), Andrer Tridgel's hashmatchool
(http://samba.org/"tridge/hashmatch/), eerethe venerabldiff(1) command, it can be seen that there are
significant similarities between the P2 compiler (http://www.standardpascal.com/p2/pcomp.pas) and the
UCSD Pascal 1.3 compiler posted to CompuServe
(http://tech.groups.yahoo.com/group/UCSDPasted/fCompiler/). Thewumbersand the names of the
opcodes for both the P2 compiler and the UCSD 1.3 compiler are all but identical.

The P2 compiler was madeadable in 1974, and Ken Bowles obtained ayctyat same yeaand sav that
it had the potential to be ported to the microprocessors of the day [1]. The project that was to be UCSD
Pascal was up and running by Oct-1974 [2].

PUG Newsletter 4
[9] 1975-Aug-22.We ae indeed working with PASCAL on the B6700. Whether the work is of immediate
interest to you is another question. Making PASCAL into a stable B6700 product for users is a secondary
objective d our project. Our primary aim is to create an intessctudent debugging environment on the
PDP-11 with virtually all of the software written in PASCAL.

[9] The overall objectives of the project are described in the enclosed project prospectus. Students will
interact with PASCAL on the small machines in a manner very reminiscent of APL on IBM 360/370.
PASCAL is interpreted using a modified version of the Zurich P-Machine recently released. The main
purpose of the modifications is to reduce the the size of the compiled code so that the PASCAL compiler
can fit within core of a small the limited machinées, we hae dne the same kinds of statistical studies
represented in the reports you kindly sent, though our data is not igas eléorm. We ae confident that

the compiler can be run on a PDP-11 with at least 20K words of meMé&rgre hoping to reduce that

amount further to perhaps 16K, when time permits. Currently the interpreter is operating, but has yet to be
tried with the whole compiler on the PDP-11.

[9] We ae using the modified PASCAL compiler on the B6700 as a tool faalal@ng the nev PASCAL

system, and generating pseudo-code for the PDP-11. Having started with an interpreter for the Zurich P-
Machine, we hae pogressed through various stages of bootstrapping to get a system compatible with the
PDP-11 objectie, and the interactie /stem objectie. Concurrent with the work using the interpretige

also hae a1 advanced student programmer writing an assembler whiarederthe compiler P-code

output into directly gecutable B6700 code. The B6700 code has bgecuged with small programs, and

should be running the whole expanded a week or so. This compile-assemble system manages its memory
in one large array in a fashion similar to that used omerional machinesWe ae using the B6700

SWAPPER for much of our batch work, and henogeshaen able to use DIRECT (noneplayable) array

Reference Manual ucsd-psystem-xc 48

ucsdpsys_history(1) ucsdpsys_history(1)

space for this purpose to enhance the speed of the processing.

[9] The short-term objeaté for the B6700 compile-assemble system is to provide a back-up means for
students to use for PASCAL howerk problem starting in late Septemb&ur PDP-11 equipment is not

all here yet, and we clearly will not be ready to use the small machines with students during the first few
weeks of the Fall QuarteOver the time period of the academic year about to start, we will almost
certainly hae ©meone complete the job of making a PASCAL compiler that can generate B6700 code
directly. Yet to be resolved is the question of whether we can map the PASCAL data structures into the
array-rav structure of the B6700 without doing violence to the basic approach of the P-compiler.

[9] The interpretre /stem is sl on the B6700, as might bexgected. Thenajor consumer of time is the

low levd character processing in the INSYMBOL and NEXTCH proceduvés.ravechanged these
procedures completelgo as to dpend upon installation intrinsic functions (Standard Procedures) that
malke wse of the B6700 string processing haadev TheGETSYM intrinsic returns information on each
successie oken in an area of stack that serves as a scanner information block. This provides a clean
interface between compiler and interprebeit it runs about half as fast as an earlier less-clean version (part
way through the bootstrapping) in which virtually all of the work of INSYMBOL was done in an ALGOL
intrinsic. Thecurrent B6700 interpraté vasion takes about 10 minutes of processor time to compile the
source file from Zurich\We epect the compile-assemble version, and also the PDP-11 version, to run
roughly fve times faster than that.

[9] During the next tw months we will be up to our ears in alligators getting this system completed well
enough to use for teaching. At a later stage | would beyhtamghare more details with you.

PUG Newsletter 8
[10] 1977-Aprl7. UCSDhas recently started using a single user software system for microcomputers,
with all major programs written irASCAL. Thecompiler is based on the P-2 portable compiler
distributes by the ETH group at Zurich, but it generates compressed pseudo-code for a much revised P-
machine interpreterAs aurrently implemented on the LSI-11, compile speed is about 700 lines per minute
(1000 on the PDP-11/10). The system includes an integatbnitor, editor, utility file handler, and
debugging package in addition to the compiler and interpréeh 56K bytes of main memorgnd dual
floppy disk drives, it has preen more conenient and faster to do all softwarevdlepment on the
microcomputer than to cross compile from a big machine. Whereaswedden using version of this
system that depend on 1/O support from the RT11 operating system distributed by Digital Equipment Corp.,
our nav system is independent of mexternal software support. The resident monitointerpreterand
run-time support package ocgugn aygregae of about 10K bytes of memory.

[10] Operation of large programs is facilitated through the concept of “Segment Procedures”, which are
rolled into memory only while actuallyvoked. Thecompiler (20K bytes), editpand File handler are all
separate segment procedures. One segment procedure can call others, and segment procedure may be
declared nested within other segment procedures, i@ #H#gibility in memory management. The user’s

data space expands (or contracts if necessary)dadaintage of as much memory as possible after the
appropriate code segment/badeen loaded.

[10] Our plan is to hae the naev system completed to the point where it may be released to others by mid
summer 1977, with documentation package included. During the suinmeedso plan to complete a

graphics support package (including an editor for graphics oriented CAl materials), an assembler for
PDP-11 natie mde, and a compiler option allowing selected PASCAL procedures to genenateamddi

rather than P-machine pseudo code. The system is designedeaehatikely painless the problem of

adding natie mde routines programmed in assembly language, allowing a user to augment the set of built-
in functions and procedures wheré@éng is important. Thisiote has been composed and printed using

a proprietary extended version of the text editor intended for use withTadiSRay, which should be ready

for release by late summeFhe system should be usable oy BDP-11 system capable of bootstrap

loading from RX11-compatible flogpdisk drives, or from the dries supplied with the Terak Corporation
LSI-11 based machines (see next section). Further details may be obtained, on request to thevaddress gi
in the heading, in separate notes titled “Status of UCSD PASCAL Project”, and “Preliminary Description of
UCSD PASCAL Software System”.

[10] In addition to the well advertised PDP-11/03 systevasadle from Digital Equipment, seral

Reference Manual ucsd-psystem-xc 49

ucsdpsys_history(1) ucsdpsys_history(1)

smaller companies are offering stand-alone computers based on the LSI-11 that would be directly suitable
for our softvare. W havebeen particularly interested in using a stand-alone machine wittokt

graphic display for interactt educational applications. In connection with the EDUCOM Discount

Program (see EDUCOM Bulletin, Spring, 1977), itv@ppears virtually certain that the Terak Corporation
8510A will be aailable to member institutions for about $5300 per machine (LSI-11, 56K byte RAM,

single flopyy disk, CRT for superimposed but independent text and graphigbplkrd, RS232

asynchronous interface for network or printer connection).

[10] Anyone who attended the West Coast Computer Faire in San Francisco skheudohina avay

impressed that small stand-alone microcomputers are big business and hereltisgpagsible to re-
implement our PASCAL based software system on system baseg ofithe most popular

microprocessors within about 3 months of work by one programitddCSD we hae garted to re-

implement for the Zilog Z80 OEM series of modules, which couldesas\he basis for PASCAL

interpretve qoeration roughly as fast as the LSI-11. At the Faire, we talked with princfpegrsfof most

of the well known microcomputer manufacturers who sell to the hobbyist market, and encountered almost
uniform enthusiasm for the idea of making PASCAilable on an industry-wide basis. On the basis of
those cowersations, there is a reasonable chance that our PASCAL system witilabla later this year

for use with the 8080A, 6502, and M6800 microprocessors in addition to the LSI-11 and Z80.

[10] There is widespread frustration, among those wheaeraadk sell microcomputer systems, that only
BASIC is generally\ailable, and that no tasBASIC implementations are abk Mary of those we talked
with at the Faire asked whether PASCAL could be standardizedpitbthe problem thgencounter wlth
non-standard BASIC (in addition to providing a more powerful programnéhghe). Een a casual
reading of the PASCAL User Group newsletter is enough to convince one that: a) people are finding it
necessary to enhance PASCAL for their own particular applications; b) the heterogeneity of the
enhancements already reported is so great that no commiteise is likely to produce a standard.

[10] As an alternatie, we kelieve that a chance exists to establishlsh a defacto standard for PASCAL, at
least for small systems, by starting a bandwagon effect in the microcomputer indugtryd definition of

the underlying language for such a standard is contained in the Jensen and Wirth “PASCAL User manual
and Report”.To implement a complete interaai oftware system, with adequatdi efengy to run on a
microcomputerwe havefound it necessary to add built-in functions and procedures for handling text and
graphics, and an EXIpfocedure-namybuilt-in for clean termination of highly recuve programs. W&

have implemented SETs of up to 255 members in a way that uses meficignéf;, as well as packed

arrays of BOOLEAN, for READ from agyboard, the implied GET has to happen before the implied
transfer from the windm variable associated with thidkef For handling flopy disks and other small

storage media, we use the DEC standard of 512 byte blocks, amdiaglloal records conforming to any
structured type allowed inASCAL. In most other respects wevgabeen able to conform closely to the
language defined in the Jensen and Wirth book.

[10] If one common PASCAL based software system were to be ogitebde almost simultaneously for

most of the mass distributes microcomputers that system would establish the basis of a defacto standard for
small stand-alone computers. Changes to such a system would certainly be needed with experience, but
those changes might well be made readiilable to most user through “down line loading” of object

code through the dialed telephone ratew Controlof the PASCAL language standard might well be

vested, at least temporarilyy a ommittee appointed by the PASCAL Use@roup. Fast turnaround
communications among members of such a committee could be supported by “electronic mail” techniques
over the dialed telephone netvk. Theverbal responses we reged from the manufacturers at the

Computer Faire suggest that an unusual opportuhéy may not be repeated, exists in mid 1977 to

establish a defacto standard in the manner described\Wer&vite the PASCAL Uses Group to join

with us at UCSD in bringing this about this summier most respects, the language and system definition
design questions can be separated from implementation déélkavesought support to alo some of

the advanced computer science students at UCSD to perform the implementation work onaighean
microcomputers as possible. Represeveatdf aher institutions would be welcome to work with us in La
Jola, either on’ system definition or implementation. Hesweve will not be able, ourselves, tovdie a

major percentage of out working time on definition of a standard.

Reference Manual ucsd-psystem-xc 50

ucsdpsys_history(1) ucsdpsys_history(1)

[10] Introductory Extbook. For the last tw years we hee wised PASCAL as the basis of the large

attendance introductory course in problem solving and programming at UCSD. The course is based on a
textbook by this writerthat so far has been printed in the campus print shop. Student respaesieseha
unusually &vearable, and the course reaches more than two-thirds of the undergraduate popugdation e
though it is treated as elaaifor most majors. This response results partly from the non-numerical
approach of the book, partly from student interest in our inteeagtstem on the PDP-11s, and partly from
our use of Kelles Rersonalized System of Instruction (PSI) as the teaching method. Though suitable for
PSI, the book can also be used as the basis fovantamal course. At the invitation of Professor David
Gries, acting as computer science areas editor for Springer Verlag publishers, the book will be published in
paperback form this summefrhe production schedule will be tights, and we anticipate that the first copies
will be available barely in time for the start of fall quarter classes in late Septer@@nger is interested

in knowing who might be interested in using the book and when. Unforturatetgtions to mad the
non-numerical approach more readily accessible orymaghines will mak it difficult to circulate

advance copies of the final text until late June at the earliéstwill be hapgy to forward inquiries to

Springer.

[10] Though very popular with the students, the non-numerical approach of the book hasfimgttalif

sell to most other publishers. The approach used in fact has depended upon programming examples using
English text, and requires STRING variables and supporting built-in functions thaveveddad to

PASCAL. Inspite of this, the students learn the same programming skills that are taught in courses using
traditional algebraic problem examples.

[10] Since the inception of our projectMeananted to orient the courses to teaching with graphic oriented
problem examples, using an approach watgd by the “Turtle Graphics” used by Seymour Papert of MIT.
The microcomputers mobecoming &ailable male it possible to teach with a graphics orientation virtually
no higher price than needed for non-graphic materials. Accordihglyextbook will be revised to

augment and often replace the text oriented examples with graghioples. Br potential users lacking a
microcomputer with graphics displaggveal alternate possibilitiesxest. Outbuilt-in functions and
procedures for graphics should be rekdyi easy to add to existing PASCAL compilers for other machines,
and we will supply documentation to assist in that procAsgescription of the built-irs needed is

contained in the note “Status of UCSD Pascal Project” already cited. The implementation will assume a
graphic display based on the “bit-map” principle, for which yndavices are waailable in the

microcomputer industryAlternate display dviers will also be provided for the Tektronix 4006, 4010, ...
series of direct-vi@ storage tube terminals. Successful, though crude, plotting of the graphic output will
also be possible on ordinary line printers. High quality graphic output is possible on matrix printers such as
those made by Printronix Gould, Varian, and Versatec.

[10] B6700 PASCAL CompilerA PASCAL compiler which generates naticode for the B7600 is moin
operation at UCSD andsalable for distribution from the UCSD Computer Cent&he compiler is

written in PASCAL, and is based on the same variant of the P-2 portable compiler on whicle \eskd

the microcomputer implementation. Compile speed is about 5000 lines per minute of logged processor
time. Thiscompiler has been used for teaching large classes at UCSD for th eolasiriths. Adar as

we knav, most of the serious bugs in the original P-2 compileetHaen corrected in both the B6700 and
microcomputer implementations. The B6700 compiler provides access to most of thevextensi

handling features of the B6700. At present, no implementation documentation has been completed for the
B6700 compiler The Computer Center will almost certainly generate such documentayi hdication

of interest in using this compiler by other institutions.

[10] Apology to Correspondents.offer an apology to the mgaipeople interested in our PASCAL work

who have tried unsuccessfully to reach me by telephone or letter in the vagstdaths. Currently must

depend upon seral pooled secretaries who are not easily accessible. Having been occupied with a heavy
teaching schedule, and with a committee assignment consuming orefall fwil working days per

week, the correspondence has piled up. The series of titled notes and position papers citevedsien ha
generated in self defense as a way to answer thg engairies. Thecommittee assignment has entered a
down period. Future written requests for these papers will be answered prdmrigyephone inquiries

mary remain dificult until the re-write of the book is completed.

Reference Manual ucsd-psystem-xc 51

ucsdpsys_history(1) ucsdpsys_history(1)

[10] p. 63: Zilog Z-80.Ken Bowles has announced an implementation for the Z-80 to be distributed
sometime this summefor more details see the Digital Equipment PDP-11 section of this Newsletter.

[10] p. 63: According to Jim C. Warren, editor or. Dobbs Journal of Computer Calisthenics and
Orthodontia (Oct. 1976 issue, p. 6), Neil Colvin of Technical Design Labs, Trenten]eksy, has
adapted a p-code compiler for the Z-80. The p-code interpreter reportedly occupies about 1K bytes.
Another Zilog rumor is that Dean Brown is the person at Zilog to see about Pascal.

PUG Newsletter 9, 10
[11] p. 112: Zilog Z-80.Ken Bowles and co-workers, UCSD, Yealapted the San Diego DEC LSI-11
implementation to run on the Z110g Z-80 running (at 2.5 MHz) about 70% as fast as the LSI-11. Release
is expected by the end of 1977. See the DEC LSI-11 (San Diego) note, abo

PUG Newsletter 11 (1978-Feb)
[12] Status of UCSD PASCAL Project (27 \anber 1977)

[12] This is a brief report on the current status of the UCSD PASCAL project intended to answer the
guestions of the hundreds of people wheehiaeen writing to us or calling by telephone. It is our intention
evantually to reach a steady state in which we can affordvte fudl time help capable of responding to
such inquiries.For the present, we kia © goologize once again to those who mayehkeen kept too long
waiting for replies.

[12] 1. Nature of the Project

[12] The project is one of the principal activities of the Institute for Information Systems (1| .ahiér
“Organized Research Units”, IIS is operated primarily to provide resources and activities within which
students and faculty can conduct research aneasment projects Within the range of such activities,
projects may support instruction and other public services, though the more usual activities of an ORU
involve anly basic research.

[12] Under IIS we hee cevdoped a major software system for stand-alone microcomputers based on the
PASCAL language. The initial reason fon@oping the system was to support instruction activities at

UCSD. Havever, the system is designed for general purpose use, particularly fonédepheent of

interactve software, and for software ddopment in general. The system has matureficently that we

are distributing copies to outside users at a $200 fee which pays for some of the student part-time assistants
who provide support to users and maintain the softw Undeprevailing University policies, we are not
attempting to reoger capital costs from the fees paid by users of our software package.vétoweumber

of interested industrial firms k& povided assistance to further the project through unrestricted grants to

the Regents of the Urersity of California marked for use by our project. These grants are our principal
source of operating funds at the present time.

[12] Since the PASCAL based software system waslolged with the intent to support long term
instructional projects, we tia daced very high emphasis on machine independeveeexpect the
repertoire of instructional softwarevioped to use the underlying system tovgrery lage. The
development costs for the instructional software wiletually dwarf the costs of the hardware on which it
operates. Sincthe industry is introducing memicrocomputer designs at a rapid rate, we wanted to be
able to mee the entire software repertoire tomenachines with a minimum of fefrt. Aswill be detailed

in later sections of this note, our system i&/monning on 5 dis-similar processors, with more planned in
the relatvely near future.We ae using the Digital Equipment LSI-11 for teachinggrsions for the 8080
and Z80 microprocessors are operational and will be ready to distribute on or about 1, J8A8ary

[12] We intend to continue promoting the use of our PASCAL-based system on agopaiar
microprocessors as practical foraweasons. Firsthis should provide 1IS with a source of continuing
income to pay for student projects. Second, PASCAL with extensions is a superior language for system
programming, and we belie that it is in the public interest to assist in the current effort ofyrpaaple

and institutions to promote wider use of PASCAL in place of some of the earlier éjhaleguages.

Though PASCAL may he&e ssme shortcomings for specific applications, when compared to specific
proprietary languages, wegad it as by far the best general purpose languagemthe public domain.

[12] Our current Research and@®pment interests include:

Reference Manual ucsd-psystem-xc 52

ucsdpsys_history(1) ucsdpsys_history(1)

[12] a. Methods of making large software systems tikrs more readily transportable tomprocessor
architectures.

[12] b. The use of microcomputers as intelligent communications devices to assist humans to work
together gen when located thousands of miles apart. This interest veiitaally involve us in a ariety of
comple software issues. In the near term it will provide us with dirtieht method of supporting users of
our software system who are remote from UCSD.

[12] c. Joint use of microcomputers and KebBeersonalized System of Instruction (PSI) as a means of
offering high quality college &l mass education at lower costs per enrolled student than associated with
conventional methodsA published introductory textbook on problem solving using PASCAL, and a
library of automated quizzes and record keeping software to go with the textbookiilatdeato others as

a first step in this direction.

[12] d. Exploration of possibilities and software problems associated witlharelware devices or
architectures- adaptable to the purposes already described. Examples include videavdisks XeY
input devices, and Vo cost strategies for interconnecting ngaemi-independent microcomputers.

[12] Partly as a matter of self preservation, weehiazcome interested in. the problem of standards for the
PASCAL language. The United States Defense Department andlarge industrial corporations Ve

recently decided to use PASCAL as a base language whichvthad extend, and possibly altéo create

system implementation languages. Although almeatyeorganization has chosen to extend or alter in

slightly different ways, we ha found that the intent portrayed in most instances is very sinhiiaur

own implementation, we too found it necessary to extend PASCAL, and in very minor ways to alter the
base language as described in Niklaus Wéniidely read “Report” on the language (see .Jensen, K. and N.
Wirth, “PASCAL User Manual and Report”, Springer Verlag, 19%8%, and maly others in the PASCAL

User Group, are very much concerned that all this extension and alteration activity will result in PASCAL
going the way of BASIC for which hundreds of dialects are in commonWedzlieve that a chance still

exists to gain consensus on a substantial family of PASCAL extensions for system programming, provided
that this can be brought about within the next 6 to 12 months. Unless someone does so before us, we intend
to corvene a summer workshop for representstiof sme of the major using ganizations in the hope

that such a consensus can be reached.

[12] Another ancillary activity of the project has been continuing searchviccdst microcomputer
hardware of high quality for use in educational institutions — particularly dlestavebeen advising and
collaborating with EDUCOM mgarding establishment of quantity purchase discounts for stand-alone
microcomputers. Therst microcomputer to be included in the EDUCOM discount program is the Terak
Corporation 8510k, Which is based on the Digital Equipment LSIFbithe current market, the Terak
unit's price of $5500 to EDUCOM member institutions is highly compatitNevetheless, the rate of new
announcements from the industry continues very high, and wedia it is all but impossible to predict
what hardware will provide the best cost/performance trafleés long aswen one year in adance. Of
necessityour search has concentrated on stand-alone microcomputers with graphic display capabilities,
and with enough main memory and secondary storage to handle thevexsitsiare and course materials
with which we are wrking. We welcome inputs on this subject from other institutions, or fropwvendor,
and endegor to keep EDUCOM informed of opportunities that seemasdi@geous. laddition to
educational and communications applications, we are interested in word processing and business
applications of the same machines.

[12] The following sections of this status report contain brief detailed summavierggomost of the

topics just enumerated. If weven't answered your questions yet, please try again with a phone call or
letter. For those who already ha aur software system in use, we will soon be providing an automatic
Tele-Mail facility on a dial-in basis. This should impedamatically our ability to keep you informed
and to respond when softwarefidifilties arise.

[12] 2. The PASCAL based Software System

[12] Thus far users who hee receved our first released systemvempies of version 1.3, which was
completed in mid August this yeaWe haveourselves been using version 1.3c since early Octd®ethe
end of the December academic break, we hopevi® daesion 1.4 aailable for distritution. Themost

Reference Manual ucsd-psystem-xc 53

ucsdpsys_history(1) ucsdpsys_history(1)

significant generally useful addition since the 1.3 release has been the screen-orientedl stdijor

package for preparation of CAl programs, following the general philgsmithe University of California

Irvine Physics Computer Delopment Project (PCDP), has been placed in operation on the Terak 8510k
microcomputer Except for some graphics materials within this package, it can be used on a wide variety of
CRT screen display daces. Softvare more specifically oriented to the Terak machine is aktable,

and includes a character set editor (for the soft character generator), and a bookkeeping package for
keeping track of student progress in a large Keller Plan (PSI) class.

[12] The software system is currentlyeeuted in a pseudo machine interpretdrich emulates a

hypothetical real machine designed to handle PASCAL constrdiatgerfly. Our pseudo machine is

similar in concept to the P-machine distributed by Wrthoup at Zurich, but we lva made extensie
changes to compress the PASCAL object code into a much smaller space than possible with the Zurich
interpreter The interpreterand run-time support routines, currently ocg@pout BK bytes of main

memory The interpreter is in the na& machine language of the host machine, and thus far has been
coded by hand using the hastssembly language. All other code in the system is written in extended
PASCAL.

[12] While the interpreted object code runs roughig fimes slower than nat cde for the host machine,
several factors allav our large system programs to run substantially faster than this would indicate. The
strategy of code compression makes it possible to runvelyatirge programs without time consuming
overlays. For example, the complete compiler occupies 20K bytes in a singllay Snce the system is
designed for frequent compile/go cycles associated with instruction,weeadded seeral built-in

procedures and functions to handle levd Operations needed frequently by the compilks a esult, the
compiler translates PASCAL source code at about 650 lines per minute on an LSI-11 with its clock set to
2.2 MHz. On a Lt MHz Z80, the compile speed will be slightly faster than this.

[12] Interpreter based versions of our system axe fl;ning on 5 distinct processors, ana twhers are

close to completion. Those operating include DEC POB+ahging from the LSI-11 to the 11/45, using

either floppy disks or RKO5 disks for secondary storayfersions for the 8080 and Z80 are operating in

our laboratorybut more of that laterSperry Unvac Minicomputer Operations at Irvine is using the system

on the V-75 and related machines. Another group at UCSD has the system running on the Nanodata QM-1.
With support from General Automation, a version is close to completed on the GAZLO family of

machines. Nationgemiconductor has an implementation nearly completed orAfDE Ricrocomputer.

[12] The principal modules of the system as it will be distributed in the 1.14 release include the following:

PASCAL compiler File manager (capabilities similar to DEBP) Screen oriented editor (cursor

positioning, immediate updates) Line oriented editor (similar to BIRG'11 Editor) Debugger (single line
execution, reference to variable contents) SETUP program (adapt system. to most ASCII terminals) BASIC
compiler (ANSI standard plus strings) Operating System and user command interpreter PASCAL pseudo
machine interpreter Linker program (for linking independently compiled program segments) Desk
Calculator utility program

[12] Users of the Terak 8510A mayn request, also reoa apies of the CAl package, and automated
quizzes for the introductory textbook, as well as the bookkeeping package.

[12] Documents describing all of the alecae available, and part of the release, but not all documents can
be considered complete at this tim&/e dstribute source and object code files on separateyldighs
formatted to be compatible with the IBM 37140 standard, with 512 byte blocks laid out in alternate 128
byte sectors according to DEEGlandard. V& haveoccasionally sent copies recorded directly on disk

packs for the RKO5 dres. All other media are painful or impossible for us to handle, and no promises are
made to use them. Those who order the full $200 release package will be sent both the documents, and
printed listings of the source programs. Copies of the deserigicuments, amounting to approximately

150 pages, may be ordered at $10 each (checks payable to the “Regents ofaiséyJwfi California”) to

cover printing and handling costs.

[12] 3. Minimum Configuration

[12] In order to use the compilgou need a total of at least 148K bytes of main mepieciuding the 8K
bytes assigned to the interpretéve use 56K bytes. ldeallyhe interpreter should be completed re-entrant

Reference Manual ucsd-psystem-xc 54

ucsdpsys_history(1) ucsdpsys_history(1)

and thus it should be possible to operate the interpreter from Read Only Méimaite, the ideal has not
quite been achied, as none of our sponsors has yet insisted on that feature.

[12] At present, the system we use with students contaiesaséuilt-in functions not needed for system
development. Theaggreyate size of these functions is large enough tegmtecompiling the compiler

itself, or the operating systemjea on a ®BK byte system. Accordinglyve airrently hae wo versions of

the system, one for students, and one for systemiaenent. Wthin the next fev months, we plan to add

a means of configuring general purpose libraries for the system, and by that means expect to be able to
return to a single version for all purposes. That single version should be practical to use in less than 18K
bytes for some purposes.

[12] If you intend to compile on one microcompuyt@rd to eecuted object routines on others, the others

can get by with as little as 1&K bytes of main memory if the operating system is not used. The resident
portion of the operating system occupies about 8K bytes itself. This will undoubtedly be reduced as part of
the libraries project.

[12] The system is designed to be used with standard IBM compatible fieks, Clearly it can be used
with other varieties of floppdisks, or with other secondary storage media, with appropriate vergri

The I/O drirers have groven to be ame of our principal bottlenecks, and we mailo gomises in advance
about supporting other diees. For DEC PDP-11 machines, the flopgisk drivers are assumed to be
compatible with the RX-11, or with the Terak 8510Avdsi Harddisks are assumed to be compatible with
the RKO5.

[12] The system is normally supplied with the assumption that the user has a simple line-oriented ASCII
terminal. TheSETUP program can be used to configure control codes for more appropriate use of most
CRT terminals. Copiesf’ the system supplied to users of the Terak 8510Aerfaky extensie wse of

the special graphics and character generator facilities of that. machine.

[12] 4. 8080 and Z80 versions

[12] The Z80 version is morunning on the Tektronix 8002 MicroprocessorvBlepment Aid system, for

which Tektronix has supplied substantial support to the project. The 8080 version uses virtually the same
source code as is used on the Z80, with conditional assembly altering certain passages in the source to
substitute for a f& of the extended Z80 instructions that yed useful.

[12] Release of the 8080/280 version of the system for other machines has been held up primarily because
of the awkwardness of handling /e arrently hae a 4log Development System, a Processor

Technology SOL system, and a Computer Power and Light COMPAL-80 system. Thediskp

provisions for each of these machines is non-standard. As a resultyevieba forced to down-load

programs via serial interfaces to get from the LSI-11 host machines usetdopdent oer to the new

8080 or Z80 based host, This hasvaroto be a ery time consuming process, and a serious bottleneck in

our work. Moreover, we ae somewhat amazed to find that the Assembly of large programs on these
machines runs almost a factor of ten slower than compilation of PASCAL programs that carry out similar
tasks. Clearlysomething has to ge if we are to reach the objegt d distributing PASCAL systems for

more than a f& 8080 and Z80 based machines.

[12] The solution to this problem that wewplan to use is based on the extgasiarket penetration of an
operating system called CP/M, which is a product of Digital ResearcWadavetalked with many

OEM and hobbyist users of the 8080 and Z80 who wanted tw When we would hae he PASCAL

system operating under CP/MVe then learned that CP/M is distributed in a package which assumes that
most users will write their own 1/O dwers. Ineffect, CP/M establishes a quasi standard for the interface
between an 8080/Z80 operating system and its IA@ndri With thousands of copies working in the field,
CP/M seems to be far ahead tdfe field in this area. Accordinglye havedecided to release the UCSD
PASCAL System for 8080 and Z80 users in a form that will work with I/@edsiand bootstrap loaders
developed for use with CP/M. This does not mean that our package will run under CP/F4vetdwe

CP/M runs on your machine it should be refyi easy to install the PASCAL system on that machie.
have been in contact with Digital Research on this concept, aryd#hesoffered to cooperate. If you do

not hare CP/M for your machine, the implementation package may be obtained from Digital Research Inc.,
Box 579, Pacific Gree, CA 93950 for $70. Since CP/M has been implemented on a very wide variety of

Reference Manual ucsd-psystem-xc 55

ucsdpsys_history(1) ucsdpsys_history(1)

8080 and 280 based machines, there is a high probability that CF/NVéE die alreadyvailable from
Digital Research or someone else for your machine.

[12] Alteration of our present interpreter to match the CP/M I/O callingerions has pneen to be \ery

simple, at least on papewe expect that some implementors of CP/M wilvkanstalled standard console

input routines which automatically echo to the standard console printer or dispiteg. dehiswill

necessitate a change, since our system uses both echoing and non-echoing console input. At this writing,
the exact method to be used is under discussion. Barring some unforeseen,c@piegyf our system
designed to run with CP/M 1/O aers should be ready for distribution by early Janu#®y8. The

distribution medium will be IBM compatible flogmlisks formatted in a manner yet to be finally specified.

We will undertale to ransform the system for other media and other formats, in general, only if afcop

the necessary hardware isitable in our laboratoryend only if funds are\ailable to pay for the extra
corversion work.

[12] For mary of the 8080 based machines wedngeen, the most practical way to install our system will
be to use 18K bytes of RAM augmented with BK bytes of ROM for the interprtgr additional RAM
or RON required by the host processor system will also be needed.

[12] 5. PASCAL Extensions and Alterations

[12] We haveattempted to implement faithfully as much as possible of PASCAL as defined in Jensen &
Wirth’s User Manual and Report. The principal extensions to PASCAL embodied in our system are related
to STRING variables, Turtle Graphics, handling of disk files, Segmeatldy) Procedures, andaal

functions for support of the system itself. Alterations include a prohibition against passing procedure or
function identifiers as parameters, restriction againstGQut of a procedure, the addition of
EXIT(<procedure-name>) to effect a normal exit from the procedure named in the pgramiedechange

in READ applying to the interast INPUT and KEYBOARD iles. Furthedetails than gien in this

section are gen in our system release documents.

[12] Type STRING is a pre-declared record containing a character count followed by a packed array of
characters. Built-iprocedures and functions include LENGTH, POS(ition), INGEFELETE, COPY

(i.e. etract), CONCAenate, SCAN, FILLCHAR, MOVERIGHTand MOVELEFT. The last four of

these also operate on eentional packed arrays of characters.

[12] Turtle Graphics describes a technique originated by Seymour Papert of MIT in which one can either
MOVE a cursor (called the “turtle”) an arbitrary number of screen units in the current pointing direction, or
TURN an arbitrary number of degrees at the current posifdRENCOLOR procedure allows the line

drawn by a MOVE to be either WHITE, BLACK, or NONE.

[12] The disk file extensions alloworking with fixed length logical records corresponding tp laga

<type>, which might typically be a RECORD data structure. GET and PUT operate normally through a
window variable of the same <type>. OPENNEW createsnafite, OPENOLD opens a pre-existing file,

and CLOSE allows saving or purgingilef SEEK(which will be distributed with the 1.11 system for the

first time) allows random access to logical records withilta SEGMENTProcedures are separately
compiled and then linked into the host program using the LINKEBegment procedure is only loaded

into main memory when it is entered for the first time, and its memory space is deallocated upon exit from
the first irvocation.

[12] READ(INPUT,X) is defined by Wirth as X: INPUT f; GET(INPUT); which we find to be extremely
awkward for interactie uise. Oursolution is to place the implied GET before the implied assignment in the
case of interaote files of type TEXT READ operates as defined in WirshReport for other TEXT files.

[12] PACKED records on our system which fit within 16 bit fields are automatically packed and unpacked
without explicit action by the programmer.

[12] 6. Introductory PASCAL Course an@xdbook

Many of those inquiring about our systemvieaeard about it through having seen the textbook
“Microcomputer Problem Solving Using PASCAL” by the author of this note, published this fall by
Springer \érlag. Ifyou haren’'t seen a cop they may be obtained from Springer at 175 FiftheA New
York City, NY 10010.

Reference Manual ucsd-psystem-xc 56

ucsdpsys_history(1) ucsdpsys_history(1)

[12] The book is the basis for teaching the large attendance introductory computer science course at UCSD.
This course comes close to matching the specifications for course CSl in the recently published curriculum
recommendations from ACM'SGCSE. Theapproach is non-numerical as far as practical, as a tactic to
reach the manstudents who come to us with inadequate preparation in high school mathematics. The
problem solving and programming approach taught is the same as we would/epa€hlkethe problem

sets were mathematics oriented. Becauseymablem examples and illustrations use our string and
graphics extensions to PASCAL, the textbook currently assumes that the studentendlidess to a

computer which runs under the UCSD PASCAL syst&¥e. will be glad to discuss the possibility of

conversion to other software systems, butdna&eay limited resources to apply to such gersions. There

are sgeral stand-alone microcomputersmbeing sold in large quantities on which our system would run,
given a snall corversion effort, and we would welcome support funds to pay for sucrecsions.

[12] Software in the form of automated quizzesvia@lable with our system release for those who may

wish to teach using thextbook. Eactchapter in the book has a list of study goals for the students to
achieve. Wherever appropriate, the quizzes test for mastery of the topics enumerated in the goals lists. The
quiz programs hea been implemented using a set of CAl primétioutines patterned after the well known
DIALOG CAI system deeloped at U.C.Irvine by Alfred Bork and his colleagues.

[12] The introductory course is taught using Kefidersonalized System of Instruction (PSI). PSI has
been found to be a more successful method of instruction tlyastreer method commonly used in
universities and collges. Thissuccess is achied, almost completely without ceentional lectures, by

using experienced students as Learning Assistants called “proctors”. The characteristics of this method
male us kelieve that it is possible to offer this course, or others constructed along the same lines, on a
packaged basis for use at other institutioAseparate paper describing this possibility in detail called
“Microcomputer Based Mass Education” isitable from the writer of this status report.

[12] 7. Tele-Mail User Support Facility

[12] We havereached the point where it will be possible for us to begin operating a dial-in computer
“mailbox” by early in the winter quarteiMe havebeen using the Terak 8510A machines occasionally as
intelligent terminals for exchanging messages via the large B6700 computer operated by the campus
computer centerOur own Tele-Mail facility will use its own single telephone number reachable directly
from the national dialed telephone network, or internally via the California stetengeent telephone

network. Paid subscribers to our software release will be notified when this mailbox facility is ready to be
used.

[12] The mailbox will be operated primarily to sensers of our software system. It will provide notices
of recent bug corrections, down-loading of program files (either source or object) where appropriate,
notices on ne additions to the software andwenachines on which implementations/edeen
completed, and other useful information from us to the users. It will alse asrv reans for us to collect
messages from specific users, and to answer them expeditisitisut the hassle of both parties having
to be at their telephones at the same time.

[12] Through the use of block transfer software, the mailbox willemalatively efficient use of the dialed
telephone netark. We would like to kegn immediately by offering a dial-in port at 1200 bits per second.
However, the present state of confusion in the industry at that speed (which is the fastest one can use with
acoustic couplers) leads us toveaautiously We can and will install a port at 300 bits per second using

the standard Hell 103A eqaent coventions. Thesystem will answer an incoming call from an ordinary
terminal by providing a brief summary of recent@epments. Iwill otherwise expect a “handshake”

from a special file transfer program that we will provide to users of our software package. This program
will be the means of interchange based ditieht transfer of messages in the form of compls.f If

you wish to send an ordinary text message to us, you will prepare the message using either of the editors
built into the system. Only after the message is complete will you need ®theatelephone connection.

[12] 8. Forthcoming Impreements

[12] As mentioned earliepur next significant impreement in the software will be a more flexible system
allowing libraries of programs. One of the main reasons for doing this will be tothkosoftware to be
configured to mad fi cient use of main memory in cases where the user does not need all of the built-in

Reference Manual ucsd-psystem-xc 57

ucsdpsys_history(1) ucsdpsys_history(1)

facilities. For example, we he o need for turtle graphics when compiling large system programs.

[12] One of the longwaited features of the melibrary system will be an arrangement allowing mixture of
PASCAL procedures with Assembly language routines and/or procedures compiled directly tovéhe nati
code of the host machine. The necessary assemblers and code generation will come somewhat after the
library system is operational. If all goes well, the library system should be ready to distribute during the
winter quarter of 1978. The assemblers andraeatide versions of the compiler will come somewhat later

as time for the necessary work permits.

[12] Mary people hae asked whether we ka in mind extensions to support Concurrent PASCAL, or
similar facilities to allev independent processes running concurrefithjs is something we would kkto
do erentually, but our current resources do not allmaking definite plans in this area.

Pre-1.2
[1] What was to become UCSD Pascajdein October 1974, by Kenneth Bowles and Mark @eaard.

[2] While Roger Sumner was a junior at UCSBRevdle College, 1974, Dr Bowles asked him to

participate in the Projest'sy/stem software design andvdiopment. Portinggf Urs Amman Pascal

compiler to the UCSD Pascal environment, and the design and implementation the PDP-11/LSI-11 P-Code
interpreter.

[1] Niklaus Wirth'sPascal User Manual and repovtas quickly adopted at more than 300 Computer
Science departments . Urs-AmmasmRmachine allowed (almost) instant Pascal arerdie machines.
Pascal was a big influence on adding Science to Computer Science.

[1] The p-Machine has similarity to B6500 stack machine hardwUsedssembly language to
implement P-machine on the PDP-11. Compiled Pascal on B6500 to writey@ibi@ED Operating
System, and to port Ammasniompiler Ammanns Pascal Compiler re-compiled for UCSD p-Machine.
Students desloped the Editgrthe Filer etc, on the PDP-11 using Pascal

Whid sgudents? When? Name names. Dddtes.

[1] Bowles persuaded Terak to build cheaper LSI-11 small compliter Terak UCSD design widely
adopted at other warsities. (vhen?)

[1] The first port of the UCSD p-System was to the Z80, and it wagtatien. Petet.awrence and Joel
McCormack worked on the first trial demo in early 1976. First step... showed Sarpegstem
seemingly workd. Pluggedn floppy disk with Kaufmanns Editor, All Pascal software worked on Z80 as
on PDP-11, with no change. Portable software.

[1] Software was sold with a $15 license fee, to support project infrastructure.

[1] There was a need to extend the Pascal language definition to accommodate some features of small
machines. Thisvas not met with unversal approal.

I.2 (date?)
[7] released in-house at UCSD. Not yet self-hosting?

1.3 (Aug-1977)
[7] released at UCSD, also released tovadther UC campuses. All parts of the system still contained in
SYSTEM.PASCAL.

The first “working” version of the interpreteior reasonably loose definitions of the term “working”, was
I.3a. Thiswas the p-machine that was used on the PDP-11/10s in th¢lalth Shillington, Pers.
Comm., 2010-May-31]

1.4 (Jan-1978)
[7] general release. System divided into separate édigor, compiler.

1.5 (Sep-1978)
[7] UNITs dereloped, compiler na able to compile them. Editor moable to copy from other iles. Filer
how has wild-carding. Mawn other features.

1.5 has sub-versions a through fy@al debugging efforts).

Reference Manual ucsd-psystem-xc 58

ucsdpsys_history(1) ucsdpsys_history(1)

11.0 (Jan-1979)
[7] Second p-machinesvsion. Dvision of single Remote 1/0 channel into separate input and output
channels. Notnuch difference in ganization from 1.5

Swansong (1979-Jul-09)
[14] Events hae ace again eertaken us resulting from continued rapid growth in interest throughout the
industry in UCSD Bscal***. Onceagain we hee o gpologize for the long delay since our last newsletter.
This time, the growth has forced major changes in the nature of the Project. As a result, this newsletter will
probably be the last one distributed from UCSD to our full mailing list.

[14] Commercial Licensing of UCSD Pascal™

[14] Readers familiar with the recent progress of our Project will recall that our top priority \abje dbi
promote the concept of machine independent softw D move a arge and compleapplications program

from one machine to anotheve havefound it vastly more practical to me the entire software system, i.e.
UCSD Pascal ™ than to re-compile the applications program using just the compiler for the same high
level language on each machine. The reason for this is that practical use of a programming language, no
matter hav well standardized, demands uses of operating systeititi€s. Thesdacilities often must be
reached using language constructions that fall outside the language standach8pesif Our

experiences in this areaveleen so successful that wevhadelt obligated to pursue a course whereby the
same UCSD Pascal System can be made widelkable on machines of mgrlifferent designs.

[14] NOTE: “UCSD Pascal” is a trademark of the Regents of theethity of California. Use thereof in
conjunction with ap goods or services is authorized by specific license, anty ary unauthorized use
thereof is contrary to the laws of the State of California.

[14] As a secondary objeet, we ae, of course, helping to promote the wider useasficBl. Agin, the

objective o program portability demands language standardization. During the last year tremendous
progress has been madevéod international standardization cd$tal. Thavork is being led by a

committee of the British Standards Institute, wheehiasued a draft for a mestandard definition of

Pascal. Thisdraft describes virtually the same Pascal as described in the original Report issued by Niklaus
Wirth. Thenew draft clears up a large number of ambiguities and inconsistencies, ins/dafimition,

making the language definition easier to understand. In the United States, a joint committee of ANSI and
IEEE is actvely participating in this dbrt. Inview of the widespread use of UCSD Pascal™ weeHalt

obliged to support a version of Pascal which agrees with the standard language as closely as practical. In
common with most other implementations of Pascal, we hade a fev carefully chosen extensions to

the standard language. Our “base” language does differ slightly fromwhdrait standard, and efforts are
under way to correct thesefdifences. W ae disappointed that it seems very unlik@hyiew of the real

world politics of standardization, that a widely used standard will soon emerge on extensions to Pascal
which are needed for some common applications.

[14] Beginning about a year ago, these objestled us to arrange for commercial licensing of the UCSD
Pascal System under circumstances that would discourage advertising as “UCSD PgsgaiSian of the
software not functionally identical to versions issued by the Project. This required a close working
relationship with maypmanufacturers, to assure correct installation of the System on their equipment. A
substantial agggete level of income to the Project was required to pay the student employees engaged in
the installation of the System on various different equipment models. By the end of the Fall quarter we
were beginning to learn toto conduct this activity reasonablyfiefiently.

[14] Because of [gd constraints on Unérsity of California activities, the Unérsity administration

directed that the Project either cease operations or find an outside licensee to handle the routine
maintenance, user support, sub-licensing, and installation of the System on additional machines (as well as
on all those already licensed). It soon became apparent that giéinfitations would mask it

impractical to use a not-for-profit outside licens€&er other reasons, well established practices of the
University of California (as well as mgrother unversities) indicated the use of just a single outside profit
making firm as the Unersity’s “Sole Licensee” for support servicesretng UCSD Rscal™. Had

several firms been licensed to handle sub-licensing, under a comeetittngement, other laws would

have made it impossible for the Uvarsity to compel the seral firms to release and maintain the same

version of the UCSD Pascal Systeiith the sole licensee, the program portability obyect optimized

Reference Manual ucsd-psystem-xc 59

ucsdpsys_history(1) ucsdpsys_history(1)

because the the licensee will distribute a common version of the system for all implementations.

[14] In the choice of a sole licensee, mather considerations were taken into accoihe felt it

necessary to choose a well established software house whose business history indicated a respect and
understanding for the systematic programming principles on which Pascal is founded. The firm had to be
large enough, and financially strong enough, that thedtsity could reasonably assure the user
community that commercial quality support services wouldvaidahle indefinitely to back commercial
distributors of UCSD &scal™. Vithout this assurance, manf the commercial distributors were already
showing signs of creating their own software support staffs — with the inevitable result that the many
distributed versions would soon differ from the nsity’s version. (Whilewe knav there are many
shortcomings in the design and implementation of UCSD Pascal™, inter-machine portability of large
application programs demands that all versions be the same in spite of those shortcomings.) The firm
chosen also had to be small enough to minimize the layers of burgandchgversity communications
needed toersee the work of the sole licenser foster continued close working relationships with the
surviving research and education components of the Project within therdityj preference was gén to

firms willing to locate the principal supporfiae for UCSD Pascal™ in the close vicinity of the UCSD
campus.

[14] Within these constraints, one of our major concerns was to find a firm willing to pursue the support
and sub-licensing of UCSD in a way that would lead to widespnesdllity of portions of the System to
students in colleges and schools at the lowest possible prices. It must be emphasized that thes objecti
cannot be achied by releasing all details of the current UCSD Pascal System into the public domain. If
there were no copyright protection and commercial publication of college textbooks, and texts were
required instead to be released to the public domain, there would be no system of mass education at the
college leel. Similarly, widespreadailability of UCSD Pascal to college students demands a distribution
approach that in some cases will resemble textbook publishing. Worée UCSD Pascal System will

not survve & an mportant tool for education unless it is also used extegsor commercial computer
applications in mandifferent ways. Asubstantial stéfs needed for support and maintenance work
necessary to assure that the quality of the UCSD Pascal System wiNégrat keast not decline, as it
evdves. Thesole licensee firm must therefore be able to pay thdtsstdfmale a easonable profit.

[14] As a result, the best we could do (for students and individual users) was to seek a sole licensee willing
to work with companies interested in “publishing” smallish configurations of the UCSD Pascal™ System

in large quantities at modest prices. Becausegaf tmnstraints, the Umersity is unable to specify the

pricing policies of the Sole License®/e ought a sole licensee willing to price its services within the

range of the mansmall companies who wish to distribute UCSBsPal™. Bgond this, the sole

licensees gricing will depend upon feedback from the metflace. W feel that the interests of the small
companies coincide with the Wersity’s dbjective d promoting program portability via machine

independent softare. Experiencwith the larger companies, whoueao far indicated an interest in

distributing UCSD Pascal™ has been thaytimually seek licensing arrangements giving them complete
freedom to modify as tlyavish. Thereforeit appears that the interests of the small distributor firms, and

of individual users in general, will bavfared if the sole licensee can base a strong and growing business on
licensing arrangements which reinforce the machine independence concept. The sole licensee can only do
this by earning a reasonable margin of profits from work with all sub-licensees, both small and large.

[14] Given the large community mointerested in UCSD Pascal™, a brief comment on your opinions
seems indicatedWe wnderstand that not all users of UCSD Pascal™, whether individualganizations,

are enthusiastic about the changes described in this sed®hope that readers will understand that we
too are frustrated about some aspects of thelisensing arrangements. The greatest frustration, by far,
results from having to satisfy the dozens of laws and regulations that apply at the federal and State of
California levels. Thenew licensing and support arrangements are the result of more than six months of
negotiation, and examination of almoséry aspect of the Project and its distribution of UCSD Pascal™.
The nev arrangements ha& been negotiated with extemsiparticipation of the Uniersity’s central
administration and g departments. Thstatus of public access to the software products of the Project,
and the stated objeess for the n&v licensing arrangements, are the best. we feen able to achie in
making UCSD Pascal™ a community wide resource, within all the imposed constvagppeal to

readers to accept thewmarrangements, and to assist us in taking advantage of the machine independent

Reference Manual ucsd-psystem-xc 60

ucsdpsys_history(1) ucsdpsys_history(1)

aspects of the UCSD Pascal™ System, and its role in helping totn@aRascal language more widely
used.

[14] SofTeb Microsystems Inc.

[14] The sole licensee chosen by thewdrsity is SofTech Microsystems Inc. (abbreviated as “SMI” in

parts of this nesletter). SMlis a newly formed subsidiary of SofTech Inc, of Waltham, Massachusetts.
The principal business of SMI will be to provide support, maintenance, sub-licensing, and other services
related to the UCSD Pascal™ System. ylimay be reached at:

Until 1 September1979 After 1 September979:

SofTech Microsystems, Inc. SofTech Microsystems, Inc.

PO. Box 28010 9994 Black Mountain Rd., Bldg 3
San Diego, California 92128 San Diego, California 92126

Tel: (714)741-1353 (temporary) Telephone pending

[14] Not the least of the reasons for selection of SofTech as the sole licensee was thereemrsise

in managing complesoftware projects. As the Projectdae to support versions of the UCSD Pascal™
System adapted for maudifferent processors and machines, it became apparent that the control of all those
versions to operate identically was getting out of hand. SofTech has a major “Software Engineering
Facility” for microcomputers, called the “MSEF”, which will be used starting immediately to help bring
some order out of the chaos that haseldged from the (necessarily) casual management environment of a
university project mainly staffed by students. In addition, SofTeat@nagement agrees with our

commitment to makthe Pascal base language supported by the UCSD Pascal™ compiler conform as
closely as possible to thewmédraft) international standard foefcal. TheMSEF and SofTech experience

will help considerably to complete this task expeditiously.

[14] As this newsletter was being prepared, most of the initidlaft&MI was just beginning to work for

the irm. Roughlyhalf of the initial stafconsists of people who, until recenthaveworked for the Project
as student employees of the Bnsity. Among the principals of the Project, Mark Qyaard has joined

SMI as a full time emplgee. Thiswriter, as drector of the Project, remains as a full time employee of the
University with no financial interest in SMI, and with no employment status with them. All parties
concerned would ha preferred that both Mark and this writer could/ddaken split appointments, partly

at SMI and partly at the Uvérsity, in order to maintain the closest possible working ties between the
Project and SMI. This has pren unworkable because of the California Conflict of Interest Code for
employees of public institutions. Matheless, eery possible effort is being made to ensure that the close
working relationship between the UCSD Project and SMI will continue.

[14] Transition to Support of UCSD Pascal™ by Sofirsticrosystems

[14] After a brief transition period, SMI will henceforth be responsible for all (sub)licensing for distribution
of the UCSD Pascal™ System, oyaf its components, to end users. The Project (i.e. UCSD) will
distribute copies of portions of the System under the present catalog arrangement until the close of business
on 14 August, 1979. Orders not requiring special handling will be processed by UCSD in the order they
arrive. Any arders not yet processed by theikable staf on the 114th of August will be turnedier to

SofTech Microsystems for whatr follow-up the consider most appropriate. Users concerned with this
switch should understand that the nucleus of Project employees wéaihahe support group will

become employees of SMI on 15 August. TheregatterProject will not be able to accept incoming

orders, and there will be no support Btalio might process such orders. Some orders for the 1.5 version of
the System were accepted by theudrsity before the current catalog based distribution mechanism went
into effect in January this yea®bviously, the hold-wer offer of $100 credit against future catalog orders
(presented to those who ordered 1.5 before the catalog system went into effectyenidl éxaire on 14

August. W gologize about the short notice, but circumstances hade it impossible to do grbetter.

[14] All existing individual licenses for use of the UCSD Pascal™ System contain a clause stating that the
license holder will hee wlimited rights to the licensed materials afteotyears, unless the Urarsity

terminates the license before that time. As a result of the negotiations described in the previous section, the
University is nav obligated to terminate all of the existing individual licensé# hasten to assure

Reference Manual ucsd-psystem-xc 61

ucsdpsys_history(1) ucsdpsys_history(1)

licensees that tlyewill be offered a replacement for the licenses, with rights similar to those provided in the
original licenses, but lacking theveesion to unlimited use after twyears.

[14] All sub-licensing of distributors of portions of the UCSD Pascal™ System was transferred to SMI as
of early June, 1979. It is expected that amicable arrangements will soon be made with virtually all firms
who currently are licensed by the Merisity for distribution of UCSD Pascal™, such that replacement
licenses will be negotiated with SMI.

[14] In preparation for the melicensing arrangement, the term “UCSD Pascal” has been mag a le

trademark of the Umersity of California. The sole license agreement requires SMI to certify that sub-
licensees, who use the term “UCSD Pascal” in advertising or describing the softwalisttiteute, do so

only when the distributed software meets specified functional tests. The tests are designed to assure that all
software identified as originating from the UCSD Pascal Project will function in the samthusay

enhancing the portability of application progranfer purposes of the transition to sub-licensing solely by

SMI, distributors currently licensed by the Marisity will be regarded as having passed the certification

tests, but only for the version(s) of the System already licensed.

[14] At this writing, SMI is busy preparing an announcement of services to be offered, and pricing for those
services as well as sub-licenses. SinceynodisMI’' s enployees hee keen hired at the going high salary

rates for system programmers, readers should not be surprised to find treap®Es’ will generally be

higher than those previously offered by UCSD. In effect, these higher prices arevaidalria necessity

if good quality support services are to eilable for the System on a continuing basis.

[14] The Great Version Number Fiasco

[14] If you order UCSD Pascal™ from a commercial distributor you may find that it is Version 1.4, 1.5, 11.0,
1.1, or IIl.0. Someearlyversions arédased orbut not identical to Versions 1.3 or |.ANe haveheard of

vendors selling Version 111.0 as better than 11.1, and vice versa, whereas there is some truth in both claims!
Herewith a brief recounting of lothis mess arose, andvd will probably be cleaned up.

[14] Version |.5 was first released from UCSD in the fall of 1978. It differed from I.4 mainly by adding the
facility to compile and use independent collections of routines called “Units”. This facility makes it
possible to provide a large library of service programs written in Pascal (or Pascal mixed with Assembly
Language), and to use them without re-compilation.

[14] During the summer and fall of 1978, the P-machine interpreter for UCSD Pascal™ was implemented
to run on seeral additional processors, notably the 6502, 6800, 9900, and GA-16. It was hoped that the
interpreter for these processors could incorporate design changesetthenBkmachine generally

compatible with a wider class of processor architectures. During the same period, the Project agreed to
work with Western Digital on the gelopment of the microprocessor W/D ismeelling as the “Pascal
MicroEngine”. Thismicroprocessor is programmed entirely in Pascal, with no machigeteassembly
language being supported. This made it necessary to augment UCSD Pascal™ with provisions for
concurrent processes, so that interrupt routines could be written. At the same time that the P-machine
interpreter was being revised for this purpose, changes were also made therzknachine more

compatible with the extended address ranges of theyereration of 16-bit microprocessors. Because the
implementation work for the 6502, 6800, 9900, and GA\i8lapped with the revision work on the P-
machine interpretesomeof the revised P-machine features found their way into the interpreters for those
processors. Initiallyit had been hoped that the first distributed versions for these processors could take
advantage of the full set of P-machine imgraents. Bythe end of 1978, it became clear that this was not
feasible, since the system software to support athef nev P-machine features would not be completed

for several more monthsTo reduce the chaos, we decided to establish as the single (interim) P-machine,
for all processors other than the MicroEngine, the version already implemented on the 6502, 6800, 9900,
and GA-16.

[14] The interim interpreter was designated as 11.0. It was first released during Feb®ulry Softvare
for 11.0 was virtually the same as Version 1.5 except for corrections of reported bugs in 1.5.

[14] Version 1.1 haswolved from 1.0 as a way to makhe System easier to use on machines with mini-
floppy disk drives. ThougH.5 and 11.0 provide much greater flexibility than Version 1.4, because of the
new Units facility, the linker required to work with Units imposes a heawgrloead burden (processing

Reference Manual ucsd-psystem-xc 62

ucsdpsys_history(1) ucsdpsys_history(1)

time, space in memargpace on the disk)Version 1.1 adds “Intrinsic” Units to the facilities of 11.0. An
Intrinsic Unit may be used without resort to the link€his eliminates the need to retain ayxopthe

linker on ones principal working disk, and eliminates the substantial time delay associated with the linking
process aftenery compile. (It is still necessary to use the linker to incorporate assembly language
routines into a Pascal program Unit in the form of EXTERNAL procedures.) At this writing, 11.1 has been
released for the Apple Il computend is being distributed by Apple Computer Inc. (not by the Project!).
Work is well under way to camrt all other implementations supported by the Project, apart from the W/D
MicroEngine, to 1.1 within the next geral months. This carersion has been delayed somewhat by the
shift of licensing and support to SofTech Microsystems.

[14] Version 111.0 is the initial version aeloped with enhancements for concurrent processing. It is the
first version to bewailable on the Western Digital MicroEngine, which isanbeing delvered to

customers. Th@ascal language facilities of 111.0 are largely those of the 1.4 version of the System, and
thus I11.0 still lacks the Units facility of 1.5, 1.0 and Il.MWork is under way to augment the 111.0 version to
include all of the facilities of 1.5, 11.0 and II.1.

[14] SofTech Microsystems will mobe responsible for releasing a singlewneersion of the System which
will provide the beneficial features of all previowersions. Thisiew version, tentatiely called Version 1V,
will probably not be wailable until 1980. It is not yet clear whether an interim Version IIl.1 will be issued
for the W/D MicroEngine, to bring the System on that machine closer to the others before Version IV is
completed.

[14] We emphasize that nothing in this summary constitutes a promise wérgeadf ary new version of the
System. Sofgéch Microsystems intends to issue a description of their plans by 1 Sept&éd7Ser

[14] User Group

[14] There hae been frequent suggestions or requests that a UCSD Pascal ®'grsap’ be established.

We havebeen very sympathetic to this concept, bwehfalt it inappropriate for us to ganize such a group
oursehes. Morewer, it has not been possible to allocate Wrsity resources to support such a user’s

group.

[14] Now SofTech Microsystems has indicated a willingness to encourage the creation of @yosgx’

and to supply some resources and assistance to that end. Readers interested in assisting with the formation
of a users goup should write to SMI (not UCSD!).

[14] Update on Processsrand Implementations

[14] As of this writing, implementations of current machine independent versions of the UCSD Pascal
System hee keen licensed for distribution on the following processors:

6502

6800, 6809
* 8080, 8085, Z80

9900
* General Automation GA-15
* PDP-11, LSI-11

Western Digital MicroEngine

[14] Note that the Project distributes copies to individuals only for the processors noted with “*”. SofTech
Microsystems will announce its own plans on individual distribution fgrodithe processors in this list.
(Remember that their distribution starts on 15 August, 1979).

[14] Licensed versions, though not fully compatible with those supported by the Projeutilatdeafor
the following:

Alpha-Micro 100

Data General N@A

Nanodata QM-1

[14] An experimental version has been implemented on the Hewlett Packard 9835 desktop camiputer
another on the Lockheed Sue.v&al bit-slice microprogrammed implementationgddso been
reported.

Reference Manual ucsd-psystem-xc 63

ucsdpsys_history(1) ucsdpsys_history(1)

[14] The Project has a version nearing completion for the 8086 procds$gsmactivity is currently delayed
for the lack of hardware on which to complete testing.

[14] Intensive Taining for UCSD pascal™

[14] Mary people who communicate with usveasked when/whether a course would be madéadole
on Pascal, and on the UCSD Pascal™ System, for people who alreadyaap pegrams in other
languages. licooperation with Integrated Computer Systems, Inc. (the “Learning Tree” people), an
intensive 14-day short course is wabeing deeloped for first offering in October this yeafbout half of
the available time will be used for guided “hands-on” use of the UCSD Pascal™ System on small
microcomputers — probably Appledl’ ThelCS mass mailed announcement on this course should be
arriving within the next f& weeks. Ifyou dont aready receie reqular mailings from ICS, write to:

Integrated Computer Systems, Inc.

Box 5339,

Santa Monica,

California 90405

[14] Future Project Plans

[14] While all of the Projecs reqular services in support of the UCSD Pascal™ System are being
transferred to SofTech Microsystems, we expect to continue a substamtiaf lkesearch and

development, and education activities at UCSD. During the next year or two, we anticipate that only a
small part of the financial support for these activities will come from royalties paid to thersityi under

the sole license agreement with SofTech Microsystevidually no support will come from regular
University of California operatinguzgets. Ifthe activity is to continue, the remaining support wilkdé

come from other sources. The principal soureesable to us are federal research grants or contracts, and
grants from industrial firms under an “associates program”. The potential sources for federal grants or
contracts are very limited at this time, and only one small contract is expected during the next academic
year.

[14] Industrial associates programs are often the primary source of support for engineering oriented
research projects at maaniversities. Undesuch a program, each of nyamember companies contribute
each year an amount of mgrnemparable to the cost of supporting the work of one graduate student.
Several firms hae dready expressed an interest in joining such a program for the UCSD Pascal™ Project.
We havebeen effectiely unable to mee ehead on aganizing the UCSD Pascal™ Associates program until
the licensing details described in this newsletter had been worked pubspectus will be sent shortly to
firms known to hae an interest in the Project. Inquiries would be most welcome from otheéesae

particularly grateful to Philips Research Laboratories, wive laantributed without waiting for the

organizing papers.

[14] Among the distinct activities, currently ongoing in the Project at UCSD, and for which financial
support is being sought, are the following:

[14] a) Natve code generation fromaBcal. Anexperimental system is nearing completion for translating
the P-code output of the UCSD Pascal™ compiler into theenaichine language of the host processor.
The approach being taken will lead, hopefuitythe implementation of code generators for different host
processors with minimal fefrt. Theearliest test cases will be the PDP-11, the 8080 and the 6502. The
plan is to allev a programmer to designate which routines (procedures and functions) in a Pascal program
will be translated toxecute directly in natie code, rather than in the P-code of the P-machine interpreter.
Programs with mixed P-code and mattode are already being used extedsgi with the natve mwde being
generated at present only by the Assembler associated with the host prodésseas the assembler
approach makes a program no longer portable from machine to machine, the generatioa afdeatiom
Pascal should maintain the portability while giving theeution eficieng of native cde.

[14] b) Distributed processing. During the next/fmonths, collections of microcomputers running UCSD
Pascal™ will be interconnected insal different “party line” bus coidurations. Onenethod, that has

been studied extendy, uses high speed serial transmission. It allocates transmission rights to the stations
connected to the network according to full character slots timed within a cycle of about one second
duration. Anothemethod uses commerciallyalable components for interconnectioneoan 8hit

Reference Manual ucsd-psystem-xc 64

ucsdpsys_history(1) ucsdpsys_history(1)

parallel data bus similar to the IEEE 488 General Purpose Instrumentation Bus. Oneeobjexfind an
interconnection method (both software and hardware) whereby mixed microcomputers, dumb terminals,
and large machines can communicate with each other within a large building xaitrpieimal cost.

Another is to learn he best to distribute the processing resources of a collection of microcomputers, some
of which will sene gecial functions (e.g. database access, number crunching, printer control, ...), while
others will be used primarily for access to the mekw Inthe course of this work, geral concepts of a
distributed operating system will be tested.

[14] c) UCSD Pascal™ Operating System inygroents. Thdimitations of the present operating system
are well known, and marideas hae keen advanced on Wwat could be impreged. Work currently going
on should result in a far more general approach to handling the disk diracspite of the physical
limitations of the typical microcomputer on which the System runs. Beyond this, thergeiat se
possibilities for designing multi-user versions of the UCSD Pascal™ System.

[14] d) Software ®ols. Thepre-compiled Units facility of current versions of the UCSD Pascal™ System
permits the implementation of large libraries of frequently needed routines. These routines can be used by
a programmer as if thewere extensions to the list of standard procedures and functions defined as part of
the Pascal language. Only those library files actually needed by the programmer must be present at
compile time and»aecution time. Work now starting is seeking an ganized basis for designing the many
separate Units that a typical applications programmer naa. WJnitsare being implemented for

applications ranging from the authoring of CAl packages to database management andiéntatacti

capture.

[14] e) Education &ckages. Thauthoring package for creating Computer Aided Instruction materials is
being thoroughly revised making used of the Units faciltie expect this package to continueolring as
experience grows in use of the existing introductory materials on Pascal programming, and as other CAT
authors reports on theikgeriences. \th the expected installation this fall of a distributed processing
network connecting the microcomputers we use for regular teaching, experiments will begin in assisting
students via remote communication from a teaching aide at a separate microcomputer.

[14] In general, we expect that software resulting fromadrihis work, that turns out to be of good enough
quality to distribute to others, will be madesitable via the licensing arrangement with SofTech
Microsystems. Asvith the software already turnegten to them, we expect SMI to add substantial value to
the nev products of the Project by turning those products into commercially maintainable form, and by
providing continuing maintenance, support, and distribution services. All inquigaslireg distribution
schedules should be directed to them (at the addnessagirlier in this newsletter), as the Project will
retain very minimal stdfesources to answer correspondence in the volume it has beeadétetcent
months. Naturallythe Project does intend to provide pre-release programs, documentation, and other
materials on an informal basis to sponsorirgpoizations, particularly those who are members of the
UCSD Pascal™ Associates program mentioned earlier.

SofTech Microsystems
[13] Electronics 1979-Aug-16, p. 33: A notice that SofTech has acquired control of UCSD Pascal.

1.1 (date?)
[7] INTRINSIC units appear: linked directly from library at run-time, rather than being copied into the code
file. Systermow has 32 segments rather than 16 (this change was not carerdd eny later versions).
UNITS can be declared as resident or non-resident.

I1.1x7b More swapping capabilities added: screen handlers and others can be made to stay on disc, loaded
only when needed.

SofTech Transition (vhen?)
[1] UC Tax Status Sealed Our Fate in early 1979, we were too successful. Though making no profit,
income exceeded $1m per yedIC files no income tax return... but only if all income is from Teaching,
Research, or Public-Service. UC feared UCSD Pascal “unrelated-business” income would trigger IRS
demand for tax return for all of UC.

[1] License was to be gin to an atside for-profit vendqrand stop licensing from UCSD itself. SofTech
MicroSystems was the licensee, initially staffed by graduates of UCSD Pascal project.

Reference Manual ucsd-psystem-xc 65

ucsdpsys_history(1) ucsdpsys_history(1)

[1] The UCSD Pascal Micro-Engine was by Western Digital Corp, who built hardware for UCSD Pascal.
Team led by Mark Oveyaard did the P-machine microcode. Cited initially as proof of special CPU design
adwantages. Barrggmith at Oregon Software soon ped that clever compiler design made Pascal code
faster for the same chip with LSI-11 microcode.

[7] Wolition Systems is a compgrfiormed by Randy Bush, of the original Pascal project at UCSD. From it
came the first truly reliable versions of Il (for the MicroEngine, of course). It also produced the first
version of the Advanced System Editor.

[7]1 Among the changes introduced in version lll is the first appearance of parallel processes, and the
routines and types needed to control them.

[7] Il.LE1 Third p-machine version, by Western Digital Inc. vi@leped for the Western Digital
MicroEngine, (thus far) the only hardware p-machine. Some architectural and philosophical changes from
previous ersions. Bug# implementation of some p-codes.

[7]1 lll.F Some debugging, minor imprements in 1/0. Single character typeahead oflyb-versions are
FO and F1.

[7] 11.GO More delugging. NOtypeahead whater.

[7]1 l1I.HO More delugging. Typeahead restored, but not reliabléersions from Western Digital, from
\olition Systems, and for PDQ.

[7]1 lll.H1 By Volition Systems for the PDQ-3. Much more reliable than other versions of Ill.
[7] NI.H1 IME,

[7]1 II.LH3 More delugging. Systemeliability improved, at cost of increased system size and reduced
awailable memory.

[7] Most recent p-machine change. Extersihanges in both p-machine instruction set and Pascal system
architecture. Soffch MicroSystems licenses various companies (such as IBM and Xerox) to bring up 1V.0
implementations on their machines.

[7] IV.1 Under license from SofTech MicroSystemsyesal companies (such as Sage Technology in
Nevada, and Network Consulting Incorporated in British Columbia) bring up IV.1 for various machines:

* NCI releases a version for the IBM PC more powerful, faater more reliable than that released by
IBM.

» Ticom Inc. releases a version for the DEC Ramth00.
Advanced Systems Editor waavailable under IV Scheduling of parallel processes debugged.

Legacy
Authors

Gillian M. Ackland
[3] what? when?

[4] Acted as Editor for the compilation of The Proceedings of the July 1979 UCSD Workshop on
Pascal Extensions.

[5] Listed as an editptJCSD Pascal 1.0 User Manual.

Mark Allen
[3] what? when?

[8] Lists him as working with Richard Glees on he 6502 interpreterThis contradicts Richard
Gleare's gatement that it was Mark Owgaard. Were all 3 working on it?

S. Dale Ander
[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.

Reference Manual ucsd-psystem-xc 66

ucsdpsys_history(1) ucsdpsys_history(1)

Lucia Bennett (ne Yandell)
[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.

[5] Listed as a software authd#CSD Pascal 1.0 User Manual.

Marc Bernard
[5] Listed as a software authd#CSD Pascal 1.0 User Manual.

Kenneth Bowles
Director. Itisn't clear whether or not he wroteyad CSD p-System code.

[1] What was to become UCSD Pascajydsein October 1974, by Kenneth Bowles and Mark
Ovelgaard.

Randy Bush
[7] Wolition Systems is a compgrfiormed by Randy Bush, of the original Pascal project at UCSD.

Raymons S. Causey
[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.

Charles Chapin
[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.

J. Gregy Davidson
Mentioned in the BASIC sources, 11-Apr-1979

Mentioned in the Setup sources, 1.0 [D1] 11-Apr-1979

Mentioned in the Yaloe sources, Jun-1977.

[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.
[5] Listed as a software authd#CSD Pascal 1.0 User Manual.

Barry Demchak
[3] mentioned

[5] Listed as a software authd&#CSD Pascal 1.0 User Manual.

Gary J. Dismukes
Mentioned in the LIBMAP sources, Mar-1979

Mentioned in the Librarian sources, Mar-1979
[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.
[5] Listed as a software authd&#CSD Pascal 1.0 User Manual.

Julie E. Erwin
[3] mentioned

[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.
[5] Listed as a software authd#CSD Pascal 1.0 User Manual.

Shawn M. Fanning
Mentioned in the Compiler sources, 1976..1979

[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.

William P. Franks
Mentioned in the Assembler sources, (?) Sep-1978

Mentioned in the Disassembler sources, 11.0 Sep-1978
[5] Listed as a software authd#CSD Pascal 1.0 User Manual.

Karen Fraser
[3] what? when?

Reference Manual ucsd-psystem-xc 67

ucsdpsys_history(1) ucsdpsys_history(1)

Richard Gleges
[3] spent the summer of 1978 working (with Mark ysarrd) on-campus at UCSD writing the 6502
interpreter that later became the basis for Apple Pascalw@ié paid UCSI¥ gandard student
“junior coder” wage of $5.50 per hour.) Trivia detail: the interpreter wedajged (and thus the first
6502-based Pascal system booted) on a Rockwell box.

[3] At the end of the summer 1978 Bill Atkinson started showing up in the lab, and he worked closely
with Mark Ovegaard to get the thing going on the Apple Il. Later Bill Atkinson offered Mark
Ovegaard and Richard Glees jobs up in Cupertino, but théwoth turned him down because they

both wanted to stay in San Diego.

[3] Later worked with Barry Demchak at ACD to covdiep the AOS (Advanced Operating System)
variant of UCSD Pascal.

C. Richard Grunsky
[3] what? when?

Albert A. Hoffman
Mentioned in the Compiler sources, 1976..1979

[5] Listed as a software authd&#CSD Pascal 1.0 User Manual.

Robert J. Hofkin
Mentioned in the LIBMAP sources, Sep-1978

Mentioned in the Long Integer sources, Jun-1977
[5] Listed as a software authd&#CSD Pascal 1.0 User Manual.

Richard S. Kaufmann
Worked on the Editgrl1-Oct-1978, 10-Dec-1978

Mentioned in the Yaloe sources, Jun-1977, 7-Oct-1977, 9-Feb-1978.
[5] Listed as a software authd&#CSD Pascal 1.0 User Manual.

Mary K. Landauer
[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.

Nang/ Lanning
[3] what? when?

Peter A. Lawrence
[3] mentioned

[5] Listed as a software authd#CSD Pascal 1.0 User Manual.

J. Raoul Ludwig
[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.

Joel J. McCormack
[3] mentioned

[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.
[5] Listed as a software authd&#CSD Pascal 1.0 User Manual.

Robert A. Nance
[5] Listed as a software authd&#CSD Pascal 1.0 User Manual.

Mark D. Ovegaard
[1] What was to become UCSD Pascajydein October 1974, by Kenneth Bowles and Mark
Ovelgaard.

[6] Unlike nost of the contributors, who were undergraduate students, Marg@x@mas a graduate
student.

[3] spent the summer of 1978 working (with Richard @bs@on-campus at UCSD writing the 6502

Reference Manual ucsd-psystem-xc 68

ucsdpsys_history(1) ucsdpsys_history(1)

interpreter that later became the basis for Apple Pascal.

[3] At the end of the summer 1978 Bill Atkinson (from Apple) started showing up in the lab, and he
worked closely with Mark Ovegeard to get the thing going on the Apple Il. Later Bill Atkinson
offered Mark Ovegaard and Richard Gleas jobs up in Cupertino, but thidoth turned him down
because theboth wanted to stay in San Diego.

[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.
[5] Listed as a software authd&#CSD Pascal 1.0 User Manual.

David A. Reisrier
[5] Listed as a software authd#CSD Pascal 1.0 User Manual.

Bruce Sherman
[3] what? when?

Keith Allan Shillington
Mentioned in the Yaloe sources, 11-Aug-1977, 13-Sep-1977.

[2] Collected, Edited and distributed the copies of documentation and software for UCSD Pascal in it's
early days on campus. Med with the system to SofTech MicroSystems, and stayed with it for just
ove a year.

[3] spent the summer of 1978 working (with Richard @bsion-campus at UCSD writing the 6502
interpreter that later became the basis for Apple Pascal.

[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.
[5] Listed as a software authd#CSD Pascal 1.0 User Manual.
[5] Listed as an editptJCSD Pascal 1.0 User Manual.

David A. Smith
[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.

David M. Steinore
[5] Listed as a software authd#CSD Pascal 1.0 User Manual.

George Symons
[3] what? when?

Roger T Sumner
Mentioned in the System sources, Jan(?)-1977.

Mentioned in the Compiler sources, 1976..1979

Mentioned in the Filer sources, 1.3 Jan(?)-1977.

Mentioned in the Librarian sources, 1.5 Sep-1978

Mentioned in the Linker sources, 1.5f Jan-1978, 11.0 1-Mar-1979
Mentioned in the Long Integer sources, Aug-1978.

Mentioned in the Yaloe sources, 13-Sep-1977, 24-Sep-1977.

[2] Roger had beenwolved with the UCSD Pascal Project fronsii974 inception. While Roger

was a unior at UCSDs Revdle College, DrBowles asked him to participate in the Projegystem
software design and ddopment. Speci€ally, Rogers wmntributions to UCSD Pascal include the
porting of Urs Amman Pascal compiler to the UCSD Pascal environment, and the design and
implementation the PDP-11/LSI-11 P-Code interpreter and deviesjrihe UCSD Pascal Operating
System, Pascal language intrinsic functions, Filer utility and Linker utility.

[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.
[5] Listed as a software authd&#CSD Pascal 1.0 User Manual.

Reference Manual ucsd-psystem-xc 69

ucsdpsys_history(1) ucsdpsys_history(1)

Steven S. Thom(p)son
Mentioned in the Filer sources, 1.5 Jun(?)-1978, 1.0 Jan(?)-1979

[5] Listed as a software authd#CSD Pascal 1.0 User Manual.

John VanZandt
Compiler (?)

Dennis J. Volper
Mentioned in the Assembler sources, 27-Sep-1978

[5] Listed as a documentation authdCSD Pascal 11.0 User Manual.

Bavid B. Wollner
[5] Listed as a software authd&#CSD Pascal 1.0 User Manual.

References
[1] http://www.jacobsschool.ucsd.edu/Pascal/ppt/KenBowles.ppt

[2] http://www.jacobsschool.ucsd.edu/Pascal/bios.html
[3] http://www.threedee.com/jcm/psystem/
[4] http://www.moorecad.com/standardpascal/pug_newsletter 17.pdf

5]

http://miller.emu.id.au/pmiller/ucsd—psystem—-um/reconstruct/00—frontice.html

[6] http://ucsdmag.ucsd.edu/magazine/vollno3/features/pascal.htm

[7]1 http://williambader.com/museum/at/psysversions.html

[8] http://www.kernelthread.com/publications/appleoshistory/1.html

[9] http://[standardpascal.org/pug_newsletter_04.pdf

[10] http://standardpascal.org/pug_newsletter 08.pdf

[11] http://standardpascal.org/pug_newsletter 09 10.pdf

[12] http://standardpascal.org/pug_newsletter 11.pdf

[13] http://standardpascal.org/pug_newsletter 15.pdf

[14] http://computer—refuge.org/bitears/pdf/westernDigital/
WD90_Pascal_Microengine/lUCSD_PascalNews|%234 Jul79.pdf

[15] http://www.museumstuff.com/learn/topics/UCSD_p-System
[16] http://en.wikipedia.org/wiki/Ucsd_pascal

BOOTSTRAPPING
This section ceers haw to build a UCSD Pascal system, when all youehs the source code, and none of
the authors are around to ask.

The process breaks intoveeal stages.
» The first stage is to cross compiler the minimum set of this to grep a system going.
» The second stage is to run the cross compiled system, and use itweyhatimpiler itself.

» The third stage is a double check: use the result of stage 2 to comepjthiag agin. Theresult should
be identical to the result of the second stage.

Stage Zero
In 2006 the UCSD issued a non-commercial royalty-free License for source code written before 1-Jun-1979
by UCSD emplgees. Yu need to download the system sources.
http://www.bitsaers.org/bits/UCSD_Pascall/ucsd_11.0/

You need a p-code interpreter (also knas a pmachine or a virtual machine) in order to run the code.
Fortunately there are a number of these on the Internet, mostly written in portable C.

Reference Manual ucsd-psystem-xc 70

ucsdpsys_history(1) ucsdpsys_history(1)

http://ucsd—-psystem—-vm.sourceforge.net/

Stage One
Compiling the source code is a challenge, if you want to completeily ary suggestion of a proprietary
taint. Usually this means not wanting to use the proprietary Apple Pascal disk images theatlabéeaon
the Internet.

You need to cross compile the system. This is needed in order to be able to run the cross compiled
compiler (see next step) “nedly”. This becomes the SYSTEM.PASCAL file.

You need to cross compile the naticmmpiler Howeve this is not sufcient, because the nati compiler
uses seeral intrinsic units. Once compiled, this becomes the SYSTEM.COMPILER file.

You need to cross compile the PASCALIO unit, to enable the compiler to deal with real numbers. This unit
is added to the SYSTEM.LIBRARfile.

You need to cross compile the LONGINTEGERS unit, to enable the compiler to deal with long integers.
This isnt complete, yet, because you must also cross assemble the DECOPS code, and link it into the long
integers unit. This unit is added to the SYSTEM.LIBRARe.

You need to cross compile the linkeFhis is needed so that assembler output and compiler output can be
linked, in order to build completely linked units. This becomes the SYSTEM.LINKER file.

You need to cross compile the librarian. This becomes the LIBRARIAN.CQIBEThisis needed to
build the SYSTEM.LIBRAR file, containing all of the intrinsic units, when you perform thevedtiild.

You need to cross compile the assemblBnis becomes the SYSTEM.ASSMBLERf Thisis needed to
build the long integer intrinsic unit, when you perform theveatiild.

Useucsdpsys_mkf$) to create a medisk image. Useaicsdpsys_digk) to copy al the system files into
the disk imagesYou now havea minimal running system.

Stage Wwo
Run the system produced in Stage One, using this system repeat of Stage One, but performing nati
compiles.etc to produce the ng disk image. You now havea lf-hosting system, probably.

Stage Three
This is a repeat of Stagevd, using the system produced in StageoT The end result should be a disk
image containing files identical to that of stage.tvf there are differences, there is a bug seheze. If
there are no significant differences, yomrtmvea If-hosting UCSD p-System, for the first time singe
the mid-1980s.

LESSONS
This section ceers some of the things learnt whilevé®ping the cross compiler.

Moti vation
The ucsd-psystem-xc project was started far ®wasons. Thérst was a desire to try out some ideas about
factory methods and mothey apply to language compilers. The second was a certain nostalgia about the
Apple Pascal system (base on II.1) from the early 1980s. Thpisivhappened at the same time, and on
2006-May-22 the ucsd-psystem-xc project was the result.

Another significant 2006vent, unknown to the author at the time, was the publication by UCSD of a
royalty-free License for non-commercial use of UCSi3dal. Notan open source license, but good
enough to work with.

Of course, a nagging memory of pevesi limitations of the UCSD system, and its compileais
motivation to use the skills learnt in the intervening decades to do it “better” this time around.

The early stages of the compiler resulted in an LCA07 conference pagital{e on the project web site).
However the project languished after that, for lack of time. Also, the techniques had beem prd a
substantial slab of time (months, full time) would be necessary to fill in all the missing pieces.

In 2010 the opportunity came that enabled work on the code to resume. More and more UCSD Pascal
system sources were becomingiable on the Internet, making the idea of a self-hosted I1.1 system, built
from the sources, from scratch, became a realistic goal. In 2010 most of the UCSD systems running on

Reference Manual ucsd-psystem-xc 71

ucsdpsys_history(1) ucsdpsys_history(1)

emulators used either Apple Pascal disk images (obviously proprietary), or other proprietary forms, and
none of which had source codeitable.

2010-March
A system with no proprietary pieces was possiblenaiith the non-commercial ridePerhaps time, and
the existence of an otherwise open source implementation, valliSD Legd Department the needed
nudge to issue an open source license, at some time in the future.

Looking at the 11.0 sources, it would appear that the first block of code files is slightly different than that of
Apple Pascal, the compiler | am using to verify the output of the cross camftiieris because intrinsic
units, and the ability to va nore than 16 segments, were both Il.1 features.

0.2, 2010-Apr-01
Version 0.2 of the cross complier was released.

Shortly after this (2010-Apr-06) the ucsd-system-vm project was initiated, as a friendly fork of Mario
Klebschs excellent p-interp project. This would permit adding features to the interpaetebug fixes if
ary were needed.

This was the beginning of my search for a p-machine test suite, on the assumption that as the UCSD team
ported their system tover more microcomputers, thievould hare nreeded a way to validate the different
ports.

The built-in EXIT function
Pascal has the ugly feature
exit(functionName)
which is approximately the eqaent of areturn statement. Buis can also act as a non-local return
statement. Non-locakturn? Who thought that was a good idea? An exception-lite concept, maybe?
Great, but for the fact that exceptions are ugly as well.

Easy enough to implement, function names are already first-class expressions, so we can use the regular
expression grammar without trouble, and adding another built-in “function”.

But it gets vorse. You may recall that programs are declared with a name, as in

program sewer;
begin
end.

S0 you can also say
exit(sewer)

and leae the program, um, “cleanly”Well, the symboiis in the symbol table, so we just add another type
to the list of acceptable types you can use for parameter one of the exit “function”.

But wait, theres nore. You can also say
exit(program)

this lets you non-local-return from the program from within units, when you dctally knav the name
of the program.

This requires adding another expression production to the granimsaimplemented using a usually-
inaccessible “program” symbol, that has the appropriate segment and procedure number.

The chr Function
Thechr function on UCSD nate ompiler did unexpected things (onexpected by todag'¥andards)
mostly because it l@as the value on the top of the stack unchanged. This is probably not ISO 7185
conforming. er now, the cross compiler works the same way.

In the future, masking the value with OxFF would be bgptervided we optimize the maskvay for STB
expressions and retent STP expressions.

Reference Manual ucsd-psystem-xc 72

ucsdpsys_history(1) ucsdpsys_history(1)

Set Opcodes Asymmetric
The natve compiler understands set=set, set<>set, set<=set (known as an improper subset), set>=set
(improper superset), but does not implement set<set (known as a proper subset) and set>set (proper
superset).

This stems from the p-machine definition, that only defines these Bauirwhy? Addingrun-time support
for these would be less than 40 bytes in the interpiesas than 20 on some architectures.y\\ave them
out? Itis asymmetric, for very little savings.

This missing set comparisons were added to the ucsd-psystem-vm p-machine 2010-May-11, and first
released 2010-May-17. The tests use the cross congfilEurse, to generate thewmepcodes.

String Handling
The builtinconcat function is sued to join strings togethédris implemented as geral calls to the
systemsconcat procedure.

procedure sconcat(var src, dest: string; destleng: integer);
begin
if length(src) + length(dest) <= destleng then
begin
moveleft(src[1], dest[length(dest) + 1], length(src));
dest[0] := chr(length(src) + length(dest))
end
end

What happens when the results ddit? Perhaps runtime error would be more appropriate?

This is compounded by the fact that there could be more than one string being joined. tégsther
implemented by the compiler as multiple calls to segm&TONCATProcedure, one for each argument.

The ugly part is thatoncat(a, b, ¢) will return concat(a, c) if concat(a, b) would
overflow but concat(a, c) would not. This is because the compiler generates these calls:
temp ;="

sconcat(temp, a, sizeof(temp));
sconcat(temp, b, sizeof(temp));
sconcat(temp, c, sizeof(temp));
at which point the abhe SCONCATode silently doing nothing orverflow looks veryvery wrong.

Standards
The UCSD pascal implementation predates the efforts to standardize the Pascal language, and had many
influences on the final result. MatJCSD coders were part of that process.

The problem with pre-dating the standard is that, inevitdhBSD Pascal was not, and is not, standard
conforming. Therds the possibilityinitially with the cross compileto retro-fit compliance; gras nuch
compliance as possible without breaking existing programs.

0.2, 2010-Apr-19
Version 0.2 of the cross compiler is released.
It is now able to compile the UCSD 11.0 compiler source code. Ddgsnduce a usable na& compiler at
this stage.

0.3, 2010-Apr-27
Version 0.3 of the cross compiler is released.
It is now able to compile all of the 11.0 system code (not the whole thing, just the “system” runtime
support). Doesm’produce a usable runtime at this stage.
The test p-machine test suite was found in the 11.0 soutdesd downloaded the 1.0 sources months
earlier and had werlooked the “diagnostics” volume.

0.4, 2010-May-06

Version 0.4 of the cross compiler is released. As of this release, all of the 11.0 non-unit sources are able to
be compiled. The cross compilennbas support for all built-in functions, excegit that needs long

Reference Manual ucsd-psystem-xc 73

ucsdpsys_history(1) ucsdpsys_history(1)

integer support.

When used to produce a disk image, the emulator is able to run the system, and display the system prompt,
and Filer also appears tovk. Noattempt to use the nati compiler.

The odd Function
Theodd function, like thechr function, does not change the value on the top of the stack. This was used
in some very ugly hacks to gain access to and, or and not bit-wise arithmetic:

a,b,c: integer;

a := o rd(odd(b) and odd(c));
a := o rd(odd(b) or odd(c));
a := o rd(not odd(b));

The cross compiler does not support this usage, but insteddaals the AND, OR and NDoperators to
provide hack-free access to the bit-wise opcodes of the p-machine.

The UCSD authors were comfortable extending Pascahé dimections, so wi didn’t they just wverload
the AND, OR and NO expressions to handle integers as well? That would result in much cleaner code
than the ord/odd hack.

0.5, 2010-May-17
Version 0.5 of the cross compiler is released.

The milestone for this release was to pass 11.0 the p-machine diagnostics. There were \guieta fe
failures to work through. This found a number of errors in the cross compiler (fixed in this release), and
also a number of errors in the p-machine (also fixed).

Version 0.9 of ucsd-psystem-vm was released the same day.

Units
Getting ordinary units to work was reladly simple. The “internal” units (for want of a better term) are
more dificult because tlyeare not documented anywhere.
(*$U-,R-%)
program pascalsystem;

globals...

unit pascalio;
interface

unit interface...
implementation

unit member procedures...

(* no BEGIN here *)
end;

begin
end.

This turned out to be relatdly simple, by re-using most of the stand-alone unit grammar again, deeper
within the regular program grammabh, and th€*$R-*) isn't optional.

Long Integers
Long integer support is mostlinfshed. Itturns out that long integers cadb dl the things that integers
can do. In particulathe following operations are not supportethd, odd, abs, andsqr .

While it would be possible to generate code to calculatetitevalue (using a division, a multiply and a
subtractionj.e. slowly) it is frustrating that the long integdiv already calculates the remaindanly to
discard it. Implementing long integerodwould only be only a f& extra bytes of code in DECOPS.

Reference Manual ucsd-psystem-xc 74

ucsdpsys_history(1) ucsdpsys_history(1)

Another puzzle: wirone DECOPS procedure, instead of 11? (Or 17, if you include the relational
operators). ThOECOPS selector only uses one byte per long integer operatioiy@s for

comparisons), but in gmon-trivial program using long integers, it is all going to add up to a non trivial
overhead... gen dter one takes into account the additional procedure attribute and procedure dictionary
penalties. Andho dispatch tables or indirect jumps within DECOPS would mean faster performance, too.
It's mot as if that segmerstirocedure dictionary is full or thing. Strange.

The call interface of the DECOPS procedure means that itlmainhplemented in Pascal, and then later
optimized by using assembly code. The assembly DECOPS couldhiea been cross checked with the
Pascal to verify correctness. This seems strangendhat long integer arithmetic is non-trivial to get
right.

The UCSD test suites | a found to date do not include long integers.

Long Integer Implementation
Long integers are implemented as a sign word, plus ((n+3)/4) words of 4 BCD digits each. Basically
unsigned arithmetic decorated with a sign.

The digits appear to kia been stored in an order that made it impossible to use thes@si2e BCD

support... of course the 6502 had bugs when you tried to mix BCD with interrupts, so maybe no big loss.
On the other hand, the Z80 had non-modalvedCD opcodes, but the BCD digits are in the wrong order
for the Z80 as well. No idea if the PDP-11 hadveaBCD opcodes or not.

| shudder when | recall owe were so hung up on printing numbers (the least common arithmetic
activity) that we consciously rejected obviously mofecafnt implementations l&kusing radix 256 or
radix 64k representations.

2010-May-30
Version 0.6 of the cross compiler is released.

0.6

The target for this release was to be able to compile units. Both ordinary units and “internal” units (for
want of a better term) are able to be compiled. This is essentially II.1 functioratitgr than 11.0, in that
theseparate keyword is not particularly meaningful.

The SYSTEM.LIBRAFY file cant actually be completed because assembler support is required.

Ord and Odd revisited
It turns out the assembler sources usetdéodd(x) and odd(y)) hack when calculating hashes
for its symbol table. Surely it would Y been easier towerload AND, OR and NO to accept integer
parameters as well? Looking at the 2.0veatompiler sources, it only adds three lines of code.

0.7, 2010-Jun-21
This release is the first to be able to build non-trivial amounts of the ucsd-psystem-osspamject’ base.
To facilitate this, maypcommand nw accept a “——arch” option, to set the architecture; this makes getting
the endian-ness correct much easied the same option is used for all ucsd-psystem-xc commands that
need to knw the byte sex.

Theucsdpsys_mkfs) command from the ucsd-psystem-fs project also accepts the same option, for the
same reason. The ucsd-psystem-fs 1.14 release was the same day.

The assembler parts of the system library can not yet be assembled, but the sources when cross compiler
produce a working system. The ucsd-psystem-os 1.1 release was the same day.

Linker Adventures
The 1.0 codefile format is unchanged from the 1.5 codefile format. This means that the 11.0 sources from
BitSavers contain the 1.5f linker sources.

However, | havebeen using the Apple Pascal compissemblerand linker to check my results against,
and it is based on II.1, and the II.1 codefile format has more information in it than the 11.0 (1.5) codefile
format. Initially | thought this would mean that the ucsd-psystem-os project would not be able to build
stage 2. Howesr, this probably wort’'be a poblem, because while | recall a system with intrinsic units,
the 11.0 sources do not containyan

Reference Manual ucsd-psystem-xc 75

ucsdpsys_history(1) ucsdpsys_history(1)

This doesrt preclude adding intrinsic units to stage 1, and so | can proceed to implement drop-in
replacements for the Apple intrinsics, if that isvitbings turn out.

Name Expression Factories
The code uses factories in a number of places, but not for building name expressions, for variables and the
like. Havever, the code has been refactored so that symbols create their ownxpaessiens. This
simplifies the code, remves a lunch of down-casts, and better suits the philogapblhe rest of the code.

This permits seeral derivations of the symbol variable class, including global, local, unit (needing
relocation), and external segments.

But how do the specialized symbols get created? By symbol factories of the scope, of course. Each scope
knows what kinds of symbols it can create.

COPYRIGHT
ucsdpsys_historyersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_histopgrogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 76

ucsdpsys_libmap(1) ucsdpsys_libmap(1)

NAME
ucsdpsys_libmap - print map of UCSD p-System code file

SYNOPSIS
ucsdpsys_libmap option..] code-file-name.
ucsdpsys_libmap -V
DESCRIPTION
Theucsdpsys_libmaprogram is used to print out a map of a UCSD p-System dedeThisis equvaent
to theLIBMAP program which comes with the UCSD p-System, but you can run it from Unix.

OPTIONS
The following options are understood:
—-d
——debug
Increase the debug outpuvdk
-o filename

——output=filename
Write the output to the named file, rather than the standard output.

—P release-name

——p—machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and tkalable opcodes). This defaults to “Il.1" if not set.

-V
—=version

Print the version of thecsdpsys_libmaprogram being>ecuted.
All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_libmapommand will exit with a status of 1 onyagrror. Theucsdpsys_libmapommand
will only exit with a status of O if there are no errors.

SEE ALSO
ucsdpsys_disassemfle
disassemble a UCSD p-System code file

ucsdpsys_lin|d)
UCSD p-System codefile linker
COPYRIGHT
ucsdpsys_libmapersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_libmaprogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 77

ucsdpsys_librarian(1) ucsdpsys_librarian(1)

NAME
ucsdpsys_librarian — UCSD p-System codefile librarian

SYNOPSIS
ucsdpsys_librarian ——file codefile[option...]
ucsdpsys_librarian ——version

DESCRIPTION
Theucsdpsys_librariaprogram is used to manipulate UCSD p-System Gledeflt has functionality
similar to the LIBRARIAN program distributed with the UCSD p-System.

OPTIONS
The following options are understood:

—afilename

——copy=filename
This option is used to name an alternate codefile from which tosegments, using the
——segmentoption. Thisfile must already exist, and must be a valid déalef hisoption must
appear on the command linéter the ——file or ——createoptions. Thisoption may be used more
than once.

—cfilename

——create=filename
This option is used to name a codefile to be created. It will replac@enf the same name.
This codefile will initially be empty If you use this option, you cannot also use-thfle option.

—f filename

——file=filename
This option is used to specify the codefile being manipulated. This file must already exist, and
must be a valid codiéd. If you use this option, you cannot also use-thereateoption.

——list This option may be used to obtain a library listing. If use by itself;ttige codefile is
unchanged. ltise on the end of a more comptemmand line, it will she you the map of the
codefile it is going to write. This option must appear on the commanadftieethe ——file
option.

—n text
——notice=text

——copyright=text
This option may be used to change the text of the copyright notice embedded-ifilthe
codefile, or to add a notice to a codefile that does not alreagycha. You will probably need
to use quotes to insulate white space and punctuation characters from the shell (or you can use
underscores instead of spaces, any Wik be replaced by spaces)o remove the copyright
notice, use the empty string; you will need to quote it. This option must appear on the command
line afterthe——file option. Thenotice is limited to 79 characters, more than that will be silently
truncated.

-o filename

——output=filename
Usually theucsdpsys_librariamommand makes the changes to-théle codefile in-place. This
option is used to select a different codefile to nexéie results. This option may not be used
with the——createoption.

—P release-name

Reference Manual ucsd-psystem-xc 78

ucsdpsys_librarian(1) ucsdpsys_librarian(1)

——p—machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and tkalable opcodes). This defaults to “Il.1" if not set.

—Ir name

—-remove=name
This option is used to reme the named segment from thefile codefle. Itis an error if the
segment is not present. The segment nametisase sensite. This option must appear on the
command linefterthe ——file option. Thisoption may be used more than once.

-R name

——force-remove=name
This option is used to remme the named segment from thefile codefle. Itis not an error if
the segment is not present. The segment name é&ase sensite. This optional also works for
segment numbers. This option must appear on the commaraftinthe ——file option. This
option may be used more than once.

-X

—-remove-system-segments
This option is used to reme £gments 0 and 2..6 from a codef Thiscan be necessary when a
(*$U-*) utility program contains dummy system segments.

—Shame

—-segment:ame
The option is used to a name segment from-treopy codefile to be added to the-file
codefle. Thesegment name isotcase sensite. This option must appear on the command line
afterthe——copyoption. Thisoption may be used more than once.

If the form——segmenthame=numberis used, the segment will also be renumbered to ttea gi
segment number.

-V

—=version
Print the version of thecsdpsys_librariaprogram beingxecuted.

All other options will produce a diagnostic error.

EXAMPLES
This section contains avfeexample commands.

List the segments in the file
You can obtain a list of the segments in the codefile using the following command.

ucsdpsys_librarian ——file example.code —-list
This will produce the same output as thsdpsys_libmdf) command.

Copyright Notice
You can change the copyright notice in a codefile using the following command.

ucsdpsys_librarian ——file example.code \
——notice "Copyright (C) 1812 Tchaikovsky"

The same command can be used to add a copyright notice to a codefile thathdoesmn'e.

Remove Ssgments
You can remee a ggnent from a codefile using the following command.

ucsdpsys_librarian ——file example.code ——remove DUMMYSEG
The segment name it case sensite.

Reference Manual ucsd-psystem-xc 79

ucsdpsys_librarian(1) ucsdpsys_librarian(1)

Transfer Segments
You can transfer segments between codefiles using the following command.

ucsdpsys_librarian ——file example.code \
——copy fromhere.code ——segment EXAMPLE

The segment name is caesensitve.

In this example, all of the segments in “example.code” are pexbeifthere was already a segment called
EXAMPLE it will be replaced. The “fromhere.code” codefile will be unchanged.

New Library
You can create a nelibrary form a series of other codefiles using a command such as

ucsdpsys_librarian ——create=system.library \
——copy pascalio.code ——segment pascalio=31 \
——copy long_integer.code ——segment longinte=30 \
——copy transcendental.code ——segment transcen=29

This leaves the contributing codefiles unchanged, and creates a completeflaéle to hold the results.

EXIT STATUS
Theucsdpsys_librariatommand will exit with a status of 1 onyagrror. Theucsdpsys_librarian
command will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_assemkig
UCSD p-System cross assembfer multiple CPU types

ucsdpsys_compilt)
A cross compiler from Pascal to UCSD p-System codefiles.

ucsdpsys_disassemfle
A utility to disassemble UCSD p-System codefiles.

ucsdpsys_libmdf)
Print segment maps of UCSD p-System codefiles.

ucsdpsys_lin|d)
UCSD p-System codefile linker

COPYRIGHT
ucsdpsys_librariaversion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_librariaprogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 80

ucsdpsys_link(1) ucsdpsys_link(1)

NAME
ucsdpsys_link — UCSD p-System codefile linker

SYNOPSIS
ucsdpsys_link[option...]filename..

ucsdpsys_link ——version
DESCRIPTION

Theucsdpsys_linkrogram is used to link incomplete programs with the library units and external
procedures and functions that complete them.

OPTIONS
The following options are understood:

—-d
——debug

This option may be used to increase the debug output. The more¥enetge more
voluminous the output.

-m filename

——map=filename
This option may be used to request that a link map be written toverefitg.

—n text
——notice=text

——copyright=text
This option may be used to set the copyright notice of the output codefile.

-o filename

——output=filename
The option is used to specify the outpld.f Notoptional.

—P release-name

——p—machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and tkalable opcodes). This defaults to “Il.1" if not set.

-V

—-verbose
This option may be used to request progress information during the link. This was useful in
1.0MHz days, not so useful wo

-V

—=version
Print the version of thecsdpsys_linkrogram beingecuted.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_linkommand will exit with a status of 1 onya@rror. Theucsdpsys_linkommand will
only exit with a status of O if there are no errors.

SEE ALSO
ucsdpsys_assemkig
UCSD p-System cross assembfer multiple CPU types

Reference Manual ucsd-psystem-xc 81

ucsdpsys_link(1) ucsdpsys_link(1)

ucsdpsys_compilt)
A cross compiler from Pascal to UCSD p-System codefiles.

ucsdpsys_disassem{le
A utility to disassemble UCSD p-System codefiles.

ucsdpsys_librariafi)
UCSD p-System codefile librarian

COPYRIGHT
ucsdpsys_linkersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller
Theucsdpsys_linkrogram comes with ABSOLUTELNO WARRANTY; for details see the LICENSE
file in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 82

ucsdpsys_littoral(1) ucsdpsys_littoral(1)

NAME
ucsdpsys_littoral — read UCSD Pascal and write C++

SYNOPSIS
ucsdpsys_littoral[option...]filename..

ucsdpsys_littoral ——version

DESCRIPTION
Theucsdpsys_littoraprogram is used to read a UCSD pascal program and write something that is nearly,
almost, but not quite, C++. This can very helpful when trying to replicate the functionality of a UCSD
Pascal program in a more modern environment.

OPTIONS
The following options are understood:

-o filename

——output=filename
This option may be used to select where the output is written. It defaults to the name of the
sourcetext file, with the extension remed and “.cc " appended.

-V
—=version

Print the version of thecsdpsys_littoraprogram beingxecuted.
All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_littoratcommand will exit with a status of 1 onyagrror. Theucsdpsys_littoratommand
will only exit with a status of O if there are no errors.

COPYRIGHT
ucsdpsys_littoralersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_littoraprogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 83

ucsdpsys_opcodes(1) ucsdpsys_opcodes(1)

NAME
ucsdpsys_opcodes — UCSD p-System system.opcodes generator

SYNOPSIS
ucsdpsys_opcodes -text-fle binary-fle
ucsdpsys_opcodes —Minary-file text-file
ucsdpsys_opcodes -V

DESCRIPTION
Theucsdpsys_opcod@sogram is used to read a text template of an assembbedde file and write the
equialent binary fle. Thisis used by theicsd-psystem-gwoject, when building the assembler and
disassembler programs.

OPTIONS
The following options are understood:

-A name

—-architecture=name
This option is used to indicate the translation to be performed, and also thextnftéheebinary
files. Thearchitecture name can usually be found in the name of the biam@@OPCODES
binary fles. Ifa pcode mtype is gin, it indicates that the data file is to be used by the p-code
disassemblethe OPCODES.II.0 file.

-e

——encode
Encode a text file into a binarijd. Thisis used to hae an editable text representation of the file
contents, so that thiecan easily be edited, and version controlled.

—-d

——decode
Decode a binary file into a textd. Thiscan be used to verse-engineer the text file from the
existing binary fies. With the passing of time, the method originally used to create the binary
files has been lost.

-V

—=version

Print the version of thecsdpsys_opcod@sogram beingecuted.
All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_opcodesmmand will exit with a status of 1 onyaerror. Theucsdpsys_opcodesmmand
will only exit with a status of O if there are no errors.

SEE ALSO
ucsdpsys_assemkig
UCSD p-System cross assembfer multiple CPU types

ucsdpsys_opcodgn
format of the OPCODES.II.0 file

COPYRIGHT
ucsdpsys_opcodesrsion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_opcod@sogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

Reference Manual ucsd-psystem-xc 84

ucsdpsys_opcodes(1) ucsdpsys_opcodes(1)

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 85

ucsdpsys_osmakgen(1) ucsdpsys_osmakgen(1)

NAME
ucsdpsys_osmakgen — write the Makefile for the ucsd-psystem-os project

SYNOPSIS
ucsdpsys_osmakgehpoption...][filename..]
ucsdpsys_osmakgen ——version

DESCRIPTION
Theucsdpsys_osmakgenogram is used to write tidakefile file for the ucsd-psystem-os project,
based on the file names provided.

The generateltflakefile file uses theicsdpsys_compilg) cross compiler to bootstrap a UCSD p-System
from sources alone. Theaetutables are then combined into disk images, usingabapsys mkfs) and
ucsdpsys_digk) file system tools. Thacsdpsys_assemkilg multi-target cross assembler is used to
assemble gnnecessary assembler code. Tiesdpsys_set(p) tool is used to translate a text
representation of SYSTEM.MISCINFO, if present, into the binary form.

The source files will be scanned, usimgsdpsys_depends, for include dependencies, and the results
incorportaed into the generatbthkefile file.

Directory Structure
Theucsdpsys_osmakgenmmand takes its cues from the names of the files yeutmit.

programymain.text
The existence of a file with this name pattern indicates thatrtiggam is to be compiled using a
Pascal compiler That file can alays include other files, but only from the same directdriye
codefile resulting from the compilation will be placed into
stage n/ hostcodefiles/ programymain.code

If there is an assembler component, the output of the compilatioainspas.code , and then
theucsdpsys_linlk) command is used to linkain.pas.code andmain.asm.code to
form the finalmain.code file.

arch/ This directory contains subdirectories, each one named for a specfic microproEastoof
these subdirectories contain various programs and library components specific to that
microprocessorExamples include “pdpl1”, “z80", and “6502".

arch/$(arch)/
Within the generatelllakefile file, the relgant subdirectoiry is alays accessed using this
construct.

arch/$(arch)/ program/main.asm.text
The existence of a file with this name pattern indicates thadrtigeam s to be built using a
cross assembleiThat file can alkays include other files, but only from the same directdrye
codefile resulting from the assembly will be placed into
stage n/ hostcodefiles/ progranmymain.asm.code

Theucsdpsys_lind) command is used to linkain.pas.code andmain.asm.code to
form the finalmain.code file.

Note: the assembler component is in a directory named the same as the Pascal portion of the
program. Havever, it is an arch sub-directoryso hat it is possible to ka dl of the sourec code,
including all architecture variants, in the same source tree.

arch/$(arch)/assembler/main.text
Each microprocessor as its own assemhbiet this is where it may be found. Note werdant
yet recoered the source code to all of the assemblers, w@age will be inconsistent.

arch/$(arch)/assembler/error-messages.text
This file, if present, will be used to create ${arch).ERRORS data file, by processing it with
theucsdpsys_errof4d) command.

Reference Manual ucsd-psystem-xc 86

ucsdpsys_osmakgen(1) ucsdpsys_osmakgen(1)

arch/$(arch)/assembler/opcode-data.text
This file, if present, will be used to create #{arch).OPCODES data file, by processing it
with theucsdpsys_opcod@9 command.

host/ This directory contains subdirectories, each one named for a specfic host system (brand name)
that are implemented using a micro procedadrinclude varying sets of peripherals. Each of
these subdirectories contain various programs and library components specific to that host

hardware. Examplefclude “terak”, “cpm”, and “apple”.

host/$(host)/
Within the generateillakefile file, the relgant subdirectoiry is alays accessed using this
construct.

host/$(host)/miscinfo.text
This is the location of the host-specific text source file oSHETEM.MISCINFOdata file.

stage n/system.syntax
This file is constructed from th@mpiler/error-messages.text file, if present.

OPTIONS
The following options are understood:

-A name

——architecture=name
This option may be used to specify an alteusasichitecture name in the generated Makefile.
By default, it is calculated from the name of the h&&tu should need this option very rarely.

-b
——no-blurb

This option may be used to suppress the extersimments generated into the Makefile.
—c number

——change=umber
This option is used to specify the number of the Aegis change set to ask for the list of file names.

—C text

——copyright=text
This option may be used to specify the copyright notice to be attached to the systemUbeary
the empty string to v& o copyright notice.

-H name

——host=name
This option may be used to specify an altexsalbst system name. Defaults to “klebsch”, in
reference to thacsdpsys_v(i) interpreter written by Mario Klebsch.

-o filename

——output=filename
This option may be used to specify the name of the file to be written. Defaults to “Makefile” if
not gven. Thename “=" is understood to mean the standard output.

—-p name

——project=name
This option is used to specify the name of the Aegis project to ask for the list of file names. If
you specify neither an Aegis change set nor an Aegis project name, only filename named omn the
command line are considered.

Reference Manual ucsd-psystem-xc 87

ucsdpsys_osmakgen(1) ucsdpsys_osmakgen(1)

—-version
Print the version of thecsdpsys_osmakgenogram beingxecuted.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_osmakgeommand will exit with a status of 1 onyagrror. Theucsdpsys_osmakgen
command will only exit with a status of 0 if there are no errors.

SEE ALSO
ucsdpsys_assemkig
UCSD p-System multi-target Cross Assembler

ucsdpsys_compilt)

UCSD p-System Cross Compiler
ucsdpsys_depends

Include file dependendinder.
ucsdpsys_digk)

UCSD p-System disk image manipulation.
ucsdpsys_mkfs)

UCSD p-System disk image creator.
ucsdpsys_set(p)

UCSD p-System SYSTEM.MISCINFO encoder and decoder
ucsdpsys_ V(i)

UCSD p-System virtual machine (p-code interpreter).

COPYRIGHT
ucsdpsys_osmakgearsion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_osmakgenogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 88

ucsdpsys_pretty(1) ucsdpsys_pretty(1)

NAME
ucsdpsys_pretty — UCSD p-System Pascal pretty printer

SYNOPSIS
ucsdpsys_pretty] option..] filename
ucsdpsys_pretty ——version

DESCRIPTION
Theucsdpsys_prettprogram is used to re-format the source file of a Pascal program. The re-formatted
program is written to the standard output.

OPTIONS
The following options are understood:

—-d
——debug

This option may be used to increase the verbosity of debug output. May be specified more than
once.

—-fname

——feature name
This option may be used to turn enable or disable the various featurascs8psys compilg)
for more information.

—ldirectory

——include directory
This option may be used to nominate a directory to be search for intsdeThisoption may
be used more than once.

—ofilename

——output filename
This option may be used to redirect the output to the naiteedffnot specified, output will be
written to the standard output.

-V
—-version

Print the version of thecsdpsys_prettgrogram beingecuted.
—-Wname

——warning name
This option may be used to enable or disable the variausings. Seecsdpsys_compilt) for
more information.

-y

——grammar-trace
Turn on parse delgging. \éry verbose. Intendefibr compiler deelopers only.

All other options will produce a diagnostic error.

EXIT STATUS
Theucsdpsys_prettgommand will exit with a status of 1 onyagrror. Theucsdpsys_prettgommand will
only exit with a status of O if there are no errors.

Reference Manual ucsd-psystem-xc 89

ucsdpsys_pretty(1) ucsdpsys_pretty(1)

COPYRIGHT
ucsdpsys_prettyersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_prettgrogram comes with ABSOLUTELNO WARRANTY; for details see the LICENSE
file in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 90

ucsdpsys_setup(1) ucsdpsys_setup(1)

NAME
ucsdpsys_setup — manipulate the SYSTEM.MISCINFO file

SYNOPSIS
ucsdpsys_setup —textfile datafile

ucsdpsys_setup —ddatafile textfile
ucsdpsys_setup -V

DESCRIPTION
Theucsdpsys_setygrogram is used to encode and decod&StM8TEM.MISCINFOconfiguration file.

This configuration file is read B3YSTEM.PASCAIlwhen the system boots, and is used to contnelthe
system output terminal is used for rpaperations. lis also used by editorSYSTEM.EDITORor
YALOB to understand he to manipulate the screen.

Think of it as a very poderminfd3) substitute. Thecsdpsys_v(i) virtual machine takes care of
translating the terminal control characters, and osese$3) to be terminal independent.

The result of theicsdpsys_setup -tbmmand is in the same format astlesdpsys_setup -@pects as
input. Thismeans you can, for example, track its contents with a version control system.

Field Values
A effort has been made to be as similar as possible to the ofgiialPprogram, except that it isn’t
interactve. The fields all hee the same names as the origiS8&TUPprogram, and accept similar values.

boolean The valuetsue andfalse , and se&eral synonyms for each, are understood.

char The values arevgn as @cimal integers, or control characters may bergusing their tradition
three-character ASCI names.

integer Integer values fields may beeaj as écimal text.

OPTIONS
The following options are understood:

-A name

——architecture=name
This option may be used to specify the machine type this file describes. This is used to encode
and decode the 16-bit fields in the data.

-d

——decode
This option is used to decode the binary form into the text form.

—-e

——encode
This option is used to encode the text form into the binary form.

—P release-name

——p—machine=release-name
This option may be used to select the p-machine of interest. This has to do with the shape of
codefiles (segment dictionaries, and tkalable opcodes). This defaults to “Il.1" if not set.

-V

—-version
Print the version of thecsdpsys_setypgrogram being>ecuted.

All other options will produce a diagnostic error.

Reference Manual ucsd-psystem-xc 91

ucsdpsys_setup(1) ucsdpsys_setup(1)

EXIT STATUS
Theucsdpsys_setuppmmand will exit with a status of 1 onyagrror. Theucsdpsys_setuppmmand will
only exit with a status of O if there are no errors.

COPYRIGHT
ucsdpsys_setwersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_setygrogram comes with ABSOLUTBELNO WARRANTY; for details see the LICENSE
file in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 92

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitteq tandop
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed svggkyour freedom to share

and change theavks. Bycontrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program — t@ ek it remains free software for all its useYde,

the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to ary other work released this way by its authoveu can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to maksure that you hae the freedom to distribute copies of free software (and charge for them

if you wish), that you receé ource code or can get it if you want it, that you can change the software or
use pieces of it in mefree programs, and that you kmgou can do these things.

To protect your rights, we need to peat others from denying you these rights or asking you to surrender
the rights. Therefore, you Y@ eertain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you kexki You must mak sure that thg, too, recere a can get the
source code. And you must shithem these terms so thknow their rights.

Developers that use the GNU GPL protect your rights with #gps: (1) assert copyright on the software,
and (2) offer you this License giving yowgiepermission to cop distribute and/or modify it.

For the deelopers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed toydaesers access to install or run modified versions of the software inside

them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the saite. Thesystematic pattern of such abuse occurs in the area of products

for individuals to use, which is precisely where it is most unacceptable. Thereforejende$igned this

version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States shouldwqiaadiots to

restrict deelopment and use of software on general-purpose computers, but in those that do, we wish to
avad the special danger that patents applied to a free program coutdtrafi&ctively proprietary To

prevent this, the GPL assures that patents cannot be used to render the program non-free.

GNU GPL 93

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

The precise terms and conditions for copying, distribution and modificatiomfollo
TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-kklaws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to grcopyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees”and “recipients” may be individuals organizations.

To “modify” a work means to cgpfrom or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exacycdime resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, woulelyoalkdirectly or
secondarily liable for infringement under applicable copyright écept eecuting it on a computer or
modifying a prvate copy. Propagation includes copying, distribution (with or without modification),

making &ailable to the public, and in some countries other activities as well.

To “corvey’ a work means ankind of propagation that enables other parties toenvakeceve wpies.
Mere interaction with a user through a computer network, with no transfer ofasom corveying.

An interactve wser interface displays “Appropriate ga Notices” to the extent that it includes a eement

and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, andvhto view a mpy of this License. If the interface presents a list

of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means gnnon-source form of a work.

A “Standard Interface” means an interface that either isfamabttandard defined by a recognized
standards bodyr, in the case of interfaces specified for a particular programming language, one that is
widely used among delopers working in that language.

The “System Libraries” of anxecutable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementatiorvalable to the public in source code forr.“ Major
Component”, in this context, means a major essential component (kernelwsiygtem, and so on) of the
specific operating system (if any) on which tlxecaitable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for anxacutable work) run the object code and to modify the work, including scripts to

control those actities. Hawvever, it does not include the work'System Libraries, or general-purpose tools

or generally wailable free programs which are used unmodified in performing those activities but which are
not part of the wrk. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

GPL 94

GPL(GNU) FreeSoftware Bundation GPL(GNU)

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License expliditimafyour unlimited
permission to run the unmodified Program. The output from runningesszbwork is ceered by this
License only if the output, gén its content, constitutes avawed work. ThisLicense acknowledges your
rights of fair use or other equalent, as provided by copyrightia

You may make, run and propagateveed works that you do not cesy, without conditions so long as

your license otherwise remains in forcéou may corvey cvered works to others for the sole purpose of
having them mak modifications exclusiely for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License inveging all material for which you do not
control copyright. Thosehus making or running the wered works for you must do so exchy on your
behalf, under your direction and control, on terms that prohibit them from makirapies of your
copyrighted material outside their relationship with you.

Corveying under ap other circumstances is permitted solely under the conditions stated belo
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Igal Rights From Anti-Circumvention bha

No covered work shall be deemed part of an effectechnological measure underyaapplicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you cowvey a overed work, you waie any egd power to forbid circumvention of technological
measures to the extent such circumvention is effecteddogiging rights under this License with respect to
the cavered work, and you disclaim gintention to limit operation or modification of the work as a means
of enforcing, against the woskisers, your or third parties’de rights to forbid circumvention of
technological measures.

4. Corveying Verbatim Copies.

You may corvey vebatim copies of the Progras®®urce code as you regeit, in ary medium, provided
that you conspicuously and appropriately publish on eachawgppropriate copyright notice; keep intact
all notices stating that this License ang aon-permissie terms added in accord with section 7 apply to
the code; keep intact all notices of the absenceyofvanranty; and gie dl recipients a coyp of this

License along with the Program.

You may charge anprice or no price for each cgphat you comey, and you may offer support or warranty
protection for a fee.

5. Corveying Modified Source Versions.

You may corvey a wrk based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and givinyantedate.

b) The work must carry prominent notices stating that it is released under this Licensg eontlitions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all
notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore applgong with ary applicable section 7 additional terms, to
the whole of the work, and all its partsgaelless of hw they are packaged. This Licensevgs no
permission to license the work inyaother way but it does not imalidate such permission if you y&a
separately recegd it.

d) Ifthe work has interaste wser interfaces, each must display Appropriatga R otices; howeer, if
the Program has interaai interfaces that do not display AppropriategdeNotices, your work need
not male them do so.

GNU GPL 95

GPL(GNU)

GNU

FreeSoftware Bundation GPL(GNU)

A compilation of a ceered work with other separate and independent works, which are not by their nature
extensions of the a@red work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “gdgi'df the compilation and its

resulting copyright are not used to limit the accessga teghts of the compilatios’ users beyond what

the individual works permit. Inclusion of ava@ed work in an agggste does not cause this License to

apply to the other parts of the aggpke.

6. Corveying Non-Source Forms.

You may corvey a @vered work in object code form under the terms of sections 4 and 5, provided that you
also comney the machine-readable Corresponding Source under the terms of this License, in one of these

ways:

a)

b)

d)

e)

Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

Corvey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offealid for at least three years and valid for as long as you

offer spare parts or customer support for that product modelda@gione who possesses the object
code either (1) a cgpof the Corresponding Source for all the software in the product thatésedo

by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing thisgog of source, or (2) access to

copy the Corresponding Source from a network server at no charge.

Corvey individual copies of the object code with a ga the written offer to provide the
Corresponding Source. This alternatis dlowed only occasionally and noncommerciadgd only
if you receved the object code with such an offer accord with subsection 6b.

Corvey te object code by offering access from a designated place (gratis or for a charge), and offer
equiaent access to the Corresponding Source in the same way through the same place at no further
chage. You need not require recipients to gape Corresponding Source along with the object code.

If the place to copthe object code is a network sentbe Corresponding Source may be on a

different server (operated by you or a third party) that supportsasnti copying facilities, provided

you maintain clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is
awailable for as long as needed to satisfy these requirements.

Corvey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Libraryneed not be included in ceeying the object code work.

A “User Product” is either (1) a “consumer product”, which meapsaangible personal property which is
normally used for personal, familygr household purposes, or (2) anything designed or sold for

incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved iraf/ar of coverage. er a particular product reced by a mrticular user‘normally

used” refers to a typical or common use of that class of prodgetdless of the status of the particular

user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer producteedless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product meany amethods, procedures, authorizatiayk or other
information required to install ancecute modified versions of awered work in that User Product from a
modified version of its Corresponding Source. The information mustsub ensure that the continued
functioning of the modified object code is in no case@ried or interfered with solely because
modification has been made.

If you cornvey an object code work under this section in, or with, or specifically for use in, a User Product,

GPL 96

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

and the coweying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed tegardtess of hw the transaction is
characterized), the Corresponding Sourcereged under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you pdhad party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warrantgr ypdates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source ooyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementatiaitable to the public in source code
form), and must require no special passwordeyrfar unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though thevere included in this License, to the extent thay tire valid under applicableva

If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remainsegaed by this License withoutgerd to the additional
permissions.

When you cowvey a opy of a mvered work, you may at your option remeany aditional permissions

from that cop, or from ary part of it. (Additional permissions may be written to require their own vemo
in certain cases when you modify therk.) You may place additional permissions on material, added by
you to a ceered work, for which you ha& a can give gpropriate copyright permission.

Notwithstanding ay other provision of this License, for material you add to\esed work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiring preservation of specified reasonalgd leotices or author attributions in that material or in
the Appropriate Lgd Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademank far use of some trade names, trademarks, or service
marks; or

f) Requiring indemnification of licensors and authors of that material by anyone wieysdre
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissie alditional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you reediit, or ary part of it, contains a notice stating that it ivgmed

by this License along with a term that is a further restriction, you mayeetmat term. If a license
document contains a further restriction but permits relicensing eegag under this License, you may
add to a ceered work material geerned by the terms of that license document, provided that the further
restriction does not sume such relicensing or caeying.

If you add terms to a @ered work in accord with this section, you must place, in theasiesource files,
a datement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

GPL 97

GPL(GNU) FreeSoftware Bundation GPL(GNU)

Additional terms, permisge a non-permissie, may be stated in the form of a separately written license,
or stated as exceptions; the edeequirements apply either way.

8. Termination.

You may not propagate or modify avaed work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including anpatent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionallynless and until the copyright holder explicitly and finally terminates your
license, and (b) permanentif/the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first timeymtebeized notice of

violation of this License (for grwork) from that copyright holdeand you cure the violation prior to 30

days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties/e/reréed
copies or rights from you under this License. If your righteeH&en terminated and not permanently
reinstated, you do not qualify to reeeirew licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to veagirun a cop of the Program. Ancillary
propagation of a a@red work occurring solely as a consequence of using peer-to-peer transmission to
receive a opy likewise does not require acceptance. Hawmenothing other than this License grants you
permission to propagate or modifyyatovered work. Theseactions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating e work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you corey a overed work, the recipient automatically regs a icense from the original
licensors, to run, modify and propagate that work, subject to this Lic&bseare not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of gagzation, or substantially all assets of
one, or subdividing an ganization, or merging genizations. Ifpropagation of a aered work results

from an entity transaction, each party to that transaction whoes@opy of the work also recees

whatever licenses to the work the padyredecessor in interest had or couldeginder the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose anfurther restrictions on thexercise of the rights granted offismed under this

License. Br example, you may not impose a license fee, rqyaltgther charge forxercise of rights

granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that anpatent claim is infringed by making, using, selling, offering for sale, or importing

GNU GPL 98

GPL(GNU) FreeSoftware Bundation GPL(GNU)

the Program or gnportion of it.
11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contslatmtributor version”.

A contributors “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some, pemnmigied by this
License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contribetsion. Br purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exchasivorldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” ysespress agreement or commitment, hegre
denominated, not to enforce a patent (such as an express permission to practice a pa&saindnco to
sue for patent infringement)o “grant” such a patent license to a party means teraath an agreement
or commitment not to enforce a patent against the party.

If you convey a overed work, knowingly relying on a patent license, and the Corresponding Source of the
work is not aailable for anyone to cop free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be s@itable, or (2) arrange to depé yourself of the benefit of the patent

license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” meansweoehal

knowledge that, but for the patent license, youreging the coered work in a countryor your recipient’s

use of the ceered work in a countrywould infringe one or more identifiable patents in that country that

you hae reason to belie ae valid.

If, pursuant to or in connection with a single transaction or arrangement, yay,corpropagate by
procuring comeyance of, a ceered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify oveya gecific copy of the caovered work,

then the patent license you grant is automatically extended to all recipients ofeifes aeork and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of terage, prohibits the
execise of, or is conditioned on the noxercise of one or more of the rights that are specifically granted
under this LicenseYou may not comey a ®vered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which yoa pagknent to the third party

based on the extent of your activity of eeying the work, and under which the third party grants, yoahn
the parties who would reeei the cavered work from you, a discriminatory patent license (a) in connection
with copies of the agered work comeyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain eeecowork, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limitiggraplied license or other defenses to

GNU GPL 99

GPL(GNU) FreeSoftware Bundation GPL(GNU)

GNU

infringement that may otherwise besgable to you under applicable patentla
12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court grageement or otherwise) that contradict the
conditions of this License, thi@lo not excuse you from the conditions of this License. If you cannot

convey a overed work so as to satisfy simultaneously your obligations under this Licenseyaottiem

pertinent obligations, then as a consequence you may naciat dl. For example, if you agree to

terms that obligate you to collect a royalty for furtheneymg from those to whom you ceey the

Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding ay other provision of this License, youvreapermission to link or combine grcovered
work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to cuay te resulting wrk. Theterms of this License will continue to apply to the
part which is the ogered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised andworv@isions of the GNU General Public
License from time to time. Suchweversions will be similar in spirit to the present version, but may differ
in detail to address meproblems or concerns.

Each version is gén a dstinguishing version nhumbetf the Program specifies that a certain numbered
version of the GNU General Public License “oyaater version” applies to it, you ¥&te option of
following the terms and conditions either of that numbered version oy d&tan version published by the
Free Software dundation. Ifthe Program does not specify a version number of the GNU General Public
License, you may chooseaversion &er published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that prosypublic statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions mayvgiyou additional or different permissions. Hoxee no additional obligations
are imposed on grauthor or copyright holder as a result of your choosing toviolidater version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM,0 THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE SATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES RBVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NDLIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS T THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULDTHE PROGRAM P®VE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSAR SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE D YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NO@ LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INMCCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM @ OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

GPL 100

GPL(GNU) FreeSoftware Bundation GPL(GNU)

SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided abaannot be gien local legd effect
according to their terms, reviewing courts shall apply localtheat most closely approximates an absolute
waiver of al civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a cgmf the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your MePrograms

If you develop a nev program, and you want it to be of the greatest possible use to the public, the best way
to achiee tis is to mak it free software whichveryone can redistribute and change under these terms.

To do 90, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectiely state the exclusion of warranty; and each file showe ladeast the “copyright”
line and a pointer to where the full notice is found.

one line to give the pgram’s name and a brief idea of what it does.
Copyright (C)year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) anlater version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Sethe GNU General Public License for more details.

You should hae receved a mpy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on e to contact you by electronic and paper mail.

If the program does terminal interaction, radkoutput a short notice lithis when it starts in an
interactve nmode:

<program> Copright (C) <year> <name of author>
This program comes with ABSOLUTEINO WARRANTY; for details type “sh@ w”. Thisis free
software, and you are welcome to redistribute it under certain conditions; typec’sfar details.

The hypothetical commands “skav” and “shav ¢” should shav the appropriate parts of the General
Public License. Of course, your programdmmands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school;, ifoesign a “copyright
disclaimer” for the program, if necessaior more information on this, andwdo goply and follav the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine libragou may consider it more useful to permit linking proprietary
applications with the librarylf this is what you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-Igpl.htmlI>.

GNU GPL 101

ucsdpsys_codié(5) ucsdpsys_codi#(5)

NAME
ucsdpsys_codefile — UCSD p-System codefile format

DESCRIPTION
The UCSD p-System codefiles setas oth intermediate object files (the egalent of Unix.o files), and
executables (the equalent of Windows.exe files).

By convention, UCSD codefiles ha a.code sufiix, and their file type in the filesystem is set c@ieDE
as well. For most commands that deal with codefiles, the UCSD system will automatically appeed
if the user does not.

As the UCSD p-Systenvelved, so did the codefile format. Most of these changes are backwards
compatible (later versions of the p-System can read the codefiles of previous versions)yeare a fe
forwards compaitible (earlier versions of the p-System can cope with codefiles from later versions of the
system).

A word of caution: while the 1.5 linker can mostly handle 1.0 codefiles, the p-code is different between the
two systems. Danot try to run a <= |.5xecutable on a >= II.0 system, vice versa

By examining the Segment Dictionaityis usually possible to determine whether a codefile is 1.5 or earlier,
or 1.0 or later.

CODEFILE LA YOUT
A UCSD p-System codefile has a one-block segment dictipfudigwed by each of the segments.

Segment
Dictionary

First Segment
Second Segmer
etc

—

Note that segments do notean gppear in orderdthough thg frequently do. The Segment Dictionary is
able to place segments anywhere in the codefile.

Each segment has three parts:

Interface Ext
(may be empty
Procedures

Link Info
(may be empty

While the Segment Dictionary format (see below) would suggest that Interface text can be placed anywhere
in the codefile, rather than immediately before the Procedure code, ivgtarstiis not done, thus
providing an indirect way of knowing tnomary blocks of interface text are present.

SEGMENT DICTIONARY
The Segment Dictionary contains the locations of the segments, and also some meta-data about each
sgment. Historicallyit has been added to with each major release.

Byte Sex
The UCSD p-System can be hosted by both little-endian and big-endian machines. vehlyteati
ordering of the host is used in codefiles, including the segment dictiondmgnerer you see integers
(16-bits) and packed records, byt saist be taken into account.

Version 1.5
The Pascal declaration looksdikis:
record
diskinfo: array [0..15] of
record

Reference Manual ucsd-psystem-xc 102

ucsdpsys_codié(5) ucsdpsys_codi#(5)

codeaddr: integer;
codeleng: integer
end;
segname: array [0..15] of array[0..7] of char;
segkind: array [0..15] of integer;
textaddr: array [0..15] of integer;
filler: array [0..87] of integer;
comment: string[79]
end;

The record field are defines as follows:

codeaddr
The start of the segmesitode, in units of 512-byte blocks.

codeleng
The sizeof of the segmestode, in bytes.

segnameThe segmerd’ name, truncated to 8 bytes, padded with spaces on the right if necédsiatybe
upper case. Must consist of letters and digits,a@syhis is checked by the UCSD p-System
native linker.

segkind
The segment kind.

LINKED (0)
No work is needed for this segment, it xeautable as is.

HOSTSEG (1)
PASCAL host program outer block, when there is at least one EXTERNAL procedure
or function. Not gecutable.

SEGPROC (2)
PASCAL segment procedure, not host

UNITSEG (3)
If codelengs non-zero, this is a library UNIT deition. If codelengs zero, this is a
library UNIT reference.

SEPRTSEG (4)
The assembler procuces this kind ajreent. Itis populated entirely with nat mde
procedures and function¥ou use the linker to link HOSTSEG segments with
SEPRTSEG segments to produce LINKED segments.

textaddr The text of the INTERRCE section of a UNIT Always ends with an IMPLEMENAT ION
keyword followed by ten (10) spaces. Itis in the usual textfile formatussepsys_tefd) for
more information) except that (a) it does noténthe two block editor headeind (b) it could be
an odd number of blocks long, if the last block wouldehieen all NUL bytes.

filler Unused. Musbe filled to zero, so that zero can be used as the defualt value for backwards
compatibility.

comment
The is the copyright string added to the codefile using*®@ comment) control comment in
the source code. It will be empty if none wagegi fill unused bytes with zero.

Version 11.0
The 1.0 codefiles had the same format as the 1.5 dedefThebig change in 1.0 were the alterations to
the opcodes.

Version 1.1
The Pascal declaration looksdikis:

record

Reference Manual ucsd-psystem-xc 103

ucsdpsys_codié(5) ucsdpsys_codi#(5)

diskinfo: array [0..15] of
record
codeaddr: integer;
codeleng: integer
end;
segname: array [0..15] of array[0..7] of char;
segkind: array [0..15] of integer;
textaddr: array [0..15] of integer;
seginfo: array [0..15] of
packed record
segnum: 0..255;

mtype: 0..15;
version: 0..7
end;

intrins: set [0..63] of boolean;
filler: array [0..67] of integer;
comment: string[79]

end;

Most of the fields are the same as for I.5. The differences are:
segkind
There are seral nav values

seginfo.segnum
blah blah blah

seginfo.mtype
blah blah blah

seginfo.version
blah blah blah

Version IV
The Pascal declaration looksdikis:
dictionary chaining
endian word
COPYRIGHT

ucsdpsys_codefileersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_codefilgrogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

SEGMENT LAYOUT
Each segment has three parts:

Interface Ext
(may be empty
Procedures

Link Info
(may be empty

Reference Manual ucsd-psystem-xc 104

ucsdpsys_codié(5) ucsdpsys_codi#(5)

Interface Text
write this section. see abe

Procedures

The procedures section is indicated bydbdeaddrandcodelendields in the Segment Dictioaryrhe
procedures are laid out as

First Procedure
Second Procedure
etc
Procedure Dictionary

The procedure dictionary can be located by usingdldelengvalue, because it appears and énel of the
segmens mde.

Procedures do notwadlys appear in the segment in strict numerical or&evcedure numbers are allocated
by the compiler when it sees a procedure declaration. If it is dedtaweard , or if it has nested
procedures, the code of other procedures may appear before it in the segment.

etc
Procedure 2 Pointer
Procedure 1 Pointer

Segment| Number of
Number | Procedures

The shortes segment insauytes: one byte for the segment numiaad one byte for the procedure count
(zero).

Link Information
write this section

COPYRIGHT
ucsdpsys_codefileersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_codefilgrogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 105

ucsdpsys_errors(5) ucsdpsys_errors(5)

NAME
ucsdpsys_errors — UCSD p-System assembler error file format

DESCRIPTION
The UCSD Adaptie Assembler uses a binary erride f Thissimplifies the error processing, at the cost of

* error texts of limited length,

« significant dificulty of editing, and

» when measured in whole 512-byte blocks, little or no space savings.
 Inconsistent with the textual error file format used by the compiler.

By using a text file as the primary source, it can be edited gasilylaced under version control. The
binary file can be created from the text file usingubsdpsys_erro(&) command.

Format of the Text file
The text file is the same as for the compiler.

Comments he a tash (#") in the first column, and extend to the end of the line. Blank lines are ignored.

Each error message has a numbeolon (“: "), and the text of the error message. Excess white space is
discarded. Thénes do not need to be in ordbut there may be no duplicates. Error text lengths in excess
of 40 characters are an error.

Format of the Binary file
The error file declared as
type error_string: string[40];
var error_file: file of error_string;

That is, each error occupies 42 bytes of the filen & the error text is significantly shortefhere is no
way to cram a longer error message into the file.

The file is indeed by aror numberusing
seek(error_file, error_num);
Error numbers that are not used contain a value of one space. Error zero exists in the file, and is unused.

EXIT STATUS
Theucsdpsys_errorsommand will exit with a status of 1 onya@rror. Theucsdpsys_errorsommand
will only exit with a status of O if there are no errors.

SEE ALSO
ucsdpsys_erro4)
UCSD p-System assembler error file builder

COPYRIGHT
ucsdpsys_errorgersion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_errorprogram comes with ABSOLUTEANO WARRANTY; for details see the LICENSE
file in the source code tarball. This is free software and you are welcome to redistribute it under certain
conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 106

ucsdpsys_opcodes(5) ucsdpsys_opcodes(5)

NAME
ucsdpsys_opcodes - format of the OPCODES.II.0 file

DESCRIPTION
Theucsdpsys_opcod@9 command is used to generate the bimameOPCODEsystem file expected
by the UCSD p-System assemblers. It can also be usedeteg@ngineer and existing file into the text
equialent.

Theucsdpsys_opcod@9 command is used to generate the bi@CODES.II.0 system file expected
by the UCSD p-System disassembler (for p-code architectures). It can also be ugerddcerggineer and
existing file into the text equilent.

Format if the Assembler text file
Comments are permitted, thetart at a hash (#) charactand finish at the end of the line.

Each opcode is a line of the form

{ " namé, value type },
Wheretypeis one of the known opcode type (see the Adapissembler sources for more information).
The resemblance to a C initializer is not a coincidence.

Format if the Disassembler text file
Comments are permitted, thetart at a hash (#) charactand finish at the end of the line.

The opcode lines makake ane of two forms

number = typg " namé,
number = type

The first format describes most of the lines in ile fThesecond format describes undefined opcodes, or
opcodes with names already known to the disassembiler.

Format of the Assembler binary file
Each line of the source file is encoded into 12 bytes in the binary file.

0..7 The name, space padded on the right
8,9 The alue. Thebyte s& depends on the architecture.
10,11 The opcode type.

The first 12 bytes are treated differentijhey indicate the byte seof the fle. All bytes are zero, except
for the value bytes; tlyeare to evaluate to 1, if you hee the byte secorrect.

Format of the Disassembler binary file
There are tw parts to the file: the opcode names and the opcode types.

For the opcode names, each entry in the file is 8 bytes wide, and space padded,bgapcode number.
Absent entries are set to all spaces. The first 52 opcodes do not appear in the table.

For the opcode types, each entry in the table is 2 bytes wide.

Just wly they felt the need for a file formatted differently than the assenshileta file is a mysteryThe
answer is lost in the mists of time.

EXIT STATUS
Theucsdpsys_opcodesmmand will exit with a status of 1 onyaerror. Theucsdpsys_opcodesmmand
will only exit with a status of O if there are no errors.

Reference Manual ucsd-psystem-xc 107

ucsdpsys_opcodes(5) ucsdpsys_opcodes(5)

COPYRIGHT
ucsdpsys_opcodesrsion 0.11
Copyright © 2006, 2007, 2010, 2011, 2012 Peter Miller

Theucsdpsys_opcod@sogram comes with ABSOLUTELNO WARRANTY; for details see the
LICENSE file in the source code tarball. This is free software and you are welcome to redistribute it under
certain conditions; for details see the LICENSE file in the source code tarball.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.grau
N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual ucsd-psystem-xc 1000

